Subduction zone parameters: Observational constraints on slab dip and the maximum moment earthquake

Carl Tape Mike Gurnis, Hiroo Kanamori, Mark Simons March 13, 2007

Thanks to Dietmar Mueller for the updated seafloor age grids.

Two influential papers:

Ruff and Kanamori (1980), "Seismicity and the subduction process" (WOS:166) Jarrard (1986), "Relations among subduction parameters" (WOS:413)

Basic idea:

Choose a response variable (e.g., Mw-max or slap dip), choose a set of predictor variables, and determine whether a simple linear combination of predictors can estimate the response.

Why do we care:

Physical intuition to get at the causal mechanism of a particular observation.

The intuition can guide modeling efforts.

1. Select your subduction zones

Jarrard (1986)

Ruff and Kanamori (1980)

2. Select a set of observable variables

	Variable	Symbol	Units
Slab	length of Benioff zone	L,	km
	horizontal extent of Benioff zone		km
	maximum depth of Benioff zone		km
	shallow dip (to 60-km depth)	DipS	deg
	intermediate dip (to 100-km depth)	DipI	deg
	deep dip (150-400 km)	DipD	deg
	descent angle of slab into mantle	DipU	deg
	slab age at trench	As	m.y.
	age of slab tip	A,	m.y.
	time since slab tip subducted	T_{st}	m.y.
	trench depth	d	km
	relative trench depth	Δd	km
	slab pull force	F_{s}	N/m
Upper plate	duration of subduction (arc age)	A_a	m.y.
	arc-trench gap	gap	km
	arc radius of curvature	RC	deg
	strain regime	strain	class
	modern strike-slip direction		
Relative motion	convergence rate	V.	cm/vr
(rates perpendicular	convergence rate including back-arc spreading	Veha	cm/yr
to trench)	rollback (absolute motion, forearc)	Vea	cm/yr
	absolute motion, overriding plate	Vaa	cm/yr
	absolute motion, underriding plate	Vua	cm/yr
	obliquity of convergence	φ	deg
	slip vector residual	$\dot{\theta}$	deg
	maximum cumulative earthquake moment	M'	

Jarrard (1986)

TABLE I

Subduction zones and parameters used in this study

Zone	Seismicity (M_w)	Depth (km)	Length (km)	Age (My)	Rate (cm y ⁻¹)
Marianas	7.2	700	300	150	4.0
Java	7.1	650	550	135	7.1
Izu-Bonin	7.2	550	500	150	6.1
N.E. Japan	8.2	600	1200	130	9.7
Tonga	8.3	650	600	120	8.9
Kermadec	8.1	570	400	120	6.4
Kuriles	8.5	625	800	100	9.3
Kamchatka	9.0	625	800	80	9.3
New Zealand	7.8	350	270	120	5.5
New Hebrides	7.9	270	170	60	2.7
Rvukvus	8.0	280	380	60	5.6
Aleutians	9.1	280	200	60	7.5
Sumatra	7.9	200	400	80	6.6
Alaska	9.2	140	450	40	5.9
Central America	8.1	200	200	45	8.0
Central Chile	8.5	250	550	50	11.0
S. Chile	9.5	160	500	20	11.1
Peru	8.2	200	700	45	10.0
Caribbean	7.5	250	280	100	2.0
Scotia arc	7.0	180	200	65	2.0
Colombia	8.8	150	220	20	7.7

Ruff and Kanamori (1980)

3. Make some scatterplots

Controls of the structure of subducted slabs

Michael Gurnis^{*} & Bradford H. Hager

Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA

Numerical simulations of subducting slabs are formulated in which the shape and dip of the slab are determined by the dynamics of the flow, rather than imposed a priori. The dip of slabs is a function of the time since the initiation of subduction. Slabs fold, develop a kink in dip, and thicken on entry into a high-viscosity lower mantle. Comparison of the simulations with seismic observations suggest that the lower mantle is at least 10-30 times more viscous than the upper mantle.

ARTICLES

Published by AGU and the Geochemical Society

Article Volume 5, Number 7 10 July 2004 Q07001, doi:10.1029/2003GC000681 ISSN: 1525-2027

Evolving force balance during incipient subduction

Michael Gurnis and Chad Hall

Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA (gurnis@caltech.edu; chall@gps.caltech.edu)

Luc Lavier

Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA

3. Make multiple linear regression (MLR) models

3. Make multiple linear regression (MLR) models (And don't just stop with scatterplots!)

				F Ra	tio			
Variable Predicted	Regression Equation	Comment*	Regression	First Variable	Second Variable	Third Variable	<i>R</i> ²	R
Slab	$L_{\rm r} = 302.9 + 0.0671 \times V_{\rm r} \times A_{\rm r}$	1.2	156.6	156.6			0.858	0.926
length	$L_{s} = 396.6 + 0.0669 \times V_{s} \times A_{s} - 3.91 \times \text{DipI}$	1, 2	89.8	174.6	4.1		0.878	0.937
Earthquake	$M_{w}' = 8.01 - 0.0105 \times A_s + 0.159 \times V_c$		14.5	19.6	17.0		0.605	0.778
Strain class	strain = $5.19 + 0.464 \times V_c - 0.122 \times \text{DipI} - 0.021 \times A_s$		25.1	34.5	21.9	16.4	0.774	0.880
Interme- diate dip	$\text{DipI} = 42.8 - 1.92 \times (A_a)^{1/2}$	3	64.3	64.3			0.791	0.889
Deep dip	$DipD = 32.3 + 0.939 \times DipI$	4	16.8	16.8	***		0.412	0.642
Arc-trench gap	gap = 51. + 81.4/tan (DipI)		147.7	147.7			0.822	0.907
Trench relative	$\Delta d = -0.81 + 0.0185 \times A_{*} + 0.0816 \times \text{Dipl}$		15.4	18.7	13.3	***	0.595	0.772
depth	$\Delta d = 0.36 + 2.87 \times 10^{-13} \times F_* \times \sin(\text{DipI})$		60.4	60.4			0.707	0.841

*Comment 1: delete NE Japan. Comment 2: for units consistency within this equation, velocities are in km/m.y.; all other velocities in this table and text are in cm/yr. Comment 3: delete all subduction zones with wide accretionary wedges; also delete Colombia and Middle America. Comment 4: also possible correlation with mantle flow.

Jarrard (1986)

Age of the Seafloor

Computing surface velocities

- 1. Description of plate boundaries.
- 2. Euler vectors for each plate.
- 3. Reference frame choice (e.g., "hot spot reference frame")?

Global Plate Velocities

Global Plate Velocities

Table 1: Slab dip angle conventions used in this study, in *Jarrard* (1986), and in *Lallemand* et al. (2005).

Name		N_{α}	definition here	definition of Jarrard (1986)
shallow dip	α_0	159	dip in zone of	dip from trench to 60 km depth
			interplate thrust event	
intermediate dip	α_i	159	dip in the depth region	dip from trench to 100 km depth
			0 to 125 km (Lallemand et al., 2005)	
deep dip	α_d	117	dip in the depth region	dip over part or all of the
			below 125 km (Lallemand et al., 2005)	interval 100 to 400 km depth

Choice of subduction zones

Name	indices	α	M_w	CMT box
Andaman	1-7	x	x	80, 100, 2, 20
Sumatra	8-12	x	x	80, 104, -15, 2
Java - west	13-15	x	x	104, 110, -15, -5
Java - east	16-19	x	x	110, 125, -15, -5
Sulawesi	20-21	x	x	118, 124, 0, 4
Negros/Sulu	22			120, 124, 7, 13
Luzon - west	23-27	x	?	118, 122, 11, 22
Philippine	28-33	x	?	122, 130, 2, 18
Rvukvu	34-38	X	x	120, 134, 20, 31
Nankai/Kyushu	39-41	x	x	130, 139, 30, 36
Yap	42			
Mariana	43-51	х	x	140, 150, 6, 26
Izu–Bonin	52-55	х	х	140, 145, 25, 35
Japan - east	56-59	х	x	141, 147, 35, 41
Kurile/Hokkaido	60-65	х	х	143, 158, 41, 48
Kamchatka	66-69	х	x	155, 165, 48, 57
Aleutian - central	70-78	x	х	168, -170, 48, 58
Aleutian - east	79-82	х	x	-170, -162, 48, 58
Alaska	83-92	x (83–90)	х	-162, -140, 48, 64
Cascadia	93-96	x	х	-132, -120, 40, 54
Jalisco	97	х	х	-108, -103, 18, 23
Mexico	98-104	х	х	-103, -91, 11, 23
Central America	105 - 107	х	х	-91, -82, 7, 15
Columbia	108-110	х	х	-84, -70, -1, 8
Peru	111 - 116	х	х	-84, -70, -15, -1
Chile - north	117 - 123	х	х	-84, -65, -31, -15
Chile - central	124 - 129	х	х	-84, -65, -45, -31
Antilles - east	130 - 133	x (130)	x (130)	-75, -55, 9, 24
Antilles - north	134 - 137			
Sandwich - east	138 - 139	x	х	-36, -22, -62, -57
Sandwich - north	140 - 142	х	х	-36, -22, -57, -52
Puysegur/Fiordland	143	x	х	158, 168, -52, -44
Kermadec	144 - 148	х	х	174, -170, -44, -25.5
Tonga	149 - 152	х	х	-180, -170, -25.5, -12
New Hebrides	153 - 156	х	х	164, 174, -24, -8
New Britain	157 - 159	x (157-158)	x (157-158)	148.5, 154, -9, -3
Cotabato	—			122, 126, 2, 9
Luzon - east	—			121, 124, 14, 22
Chile - south	—			-85, -60, -60, -45
Solomon - east	—			156.5, 165, -12, -3
Solomon - west	_			152.5, 156.5, -12, -3

The age of subduction zone (SA)

	Reference				
J86 here					
Andaman 100 ± 40 100 Jarrard (1986)					
Sumatra 27 ± 3 200 Hamilton (1979))				
Java - west 27 ± 3 27 Jarrard (1986)					
Java - east 27 ± 3 27 Jarrard (1986)					
Sulawesi 7 ± 4 7 Jarrard (1986)					
Luzon - west – 23 Yumul Jr. et al. (20	003)				
Philippine 6 ± 4 6 Ozawa et al. (2004); Yumul Ju	r. et al. (2003)				
Ryukyu 55 ± 5 55 $Jarrard$ (1986)					
Nankai/Kyushu 175 \pm 5 17 Kimura et al. (200)5)				
Mariana 45 ± 5 45 Stern and Bloomer (1992)				
Izu–Bonin 45 ± 5 45 Stern and Bloomer (1992)				
Japan - east 115 ± 5 $120 \pm 7^{\dagger}$ Minoura and Hasegawa	a (1992)				
Kurile-Hokkaido 82 ± 16 82 Jarrard (1986)					
Kamchatka 153 ± 10 153 Jarrard (1986)					
Aleutian - central 56 ± 6 55 Scholl et al. (1986)	5)				
Aleutian - east 160 ± 10 160 $Jarrard$ (1986)					
Alaska 160 ± 10 160 $Jarrard$ (1986)					
Cascadia 175 ± 10 175 Jarrard (1986)					
Jalisco 90 ± 3 90 Jarrard (1986)					
Mexico 90 ± 3 90 $Jarrard$ (1986)					
Central America 100 ± 10 100 $Jarrard$ (1986)					
Columbia 242 ± 5 242 $Jarrard$ (1986)					
Peru 226 ± 19 226 $Jarrard$ (1986)					
Chile - north 226 ± 19 226 $Jarrard$ (1986)					
Chile - central 226 ± 19 226 $Jarrard$ (1986)					
Antilles - east 48 ± 4 48 $Jarrard$ (1986)					
Sandwich - east 30 45 $Barker$ (2001)					
Sandwich - north 30 45 $Barker$ (2001)					
Puysegur/Fiordland – 12 ± 4 Sutherland et al. (20)	006)				
Kermadec 30 ± 2 28 Ballance et al. (19)	99)				
Tonga 24 ± 7 48 <i>McDougall</i> (1994	.)				
New Hebrides 8 ± 3 11 ± 1 Greene et al. (199	4)				
New Britain 8 ± 3 8 Petterson et al. (19)	99)				
Cotabato – 4					
Negros/Sulu – 4					
Luzon - east –					
Chile - south 150 ± 6 Jarrard (1986)					
Antilles - north 48 ± 4 Jarrard (1986)					
Solomon - east – 8 Petterson et al. (19	999)				
Solomon - west 8 ± 3 8 Petterson et al. (19)	999)				

The seismogenic dip angle

index	name	$CMT (M_w \ge$		≥ 6.5)	J86	here	Reference
		#	depth	α_0	α_0	α_0	
1	Andaman	6	18 ± 7	21 ± 13	19	15	$Engdahl \ et \ al. \ (2007)$
2	Sumatra	10	23 ± 10	16 ± 10	16	7	(multiple options)
3	Java - west	2	33 ± 18	19 ± 12	16	8	Kopp et al. (2002)
4	Java - east	1	15	7	16	10	Wittwer et al. (2006)
5	Sulawesi	9	26 ± 7	18 ± 9	18	8	Kopp et al. (1999)
6	Luzon - west	0			_	NA	Hayes and Lewis (1984)
7	Philippine	22	27 ± 11	26 ± 9	43	30	
8	Ryukyu	1	38	24	19	8	Kodaira et al. (1996)
9	Nankai/Kyushu	4	27 ± 5	15 ± 5	10	8	(multiple options)
10	Mariana	1	22	16	19	NA	
11	Izu-Bonin	1	15	22	22	6	Takahashi et al. (1998)
12	Japan - east	13	30 ± 10	16 ± 4	15	8	(multiple options)
13	Kurile/Hokkaido	32	30 ± 10	20 ± 6	22	13	Nakanishi et al. (2004)
14	$\operatorname{Kamchatka}$	9	41 ± 14	29 ± 3	19	15	$B\ddot{u}rgmann\ et\ al.\ (2005)$
15	Aleutian - central	29	26 ± 7	21 ± 4	25	21	Cross and Freymueller (2007)
16	Aleutian - east	4	33 ± 4	23 ± 3	9	15	
17	Alaska	9	26 ± 8	12 ± 5	7	8	Ye et al. (1997)
18	Cascadia	1	15	9	9 ± 4	11	$Fl\"uck \ et \ al. \ (1997)$
19	Jalisco	2	21 ± 8	11 ± 2	19	14	
20	Mexico	24	23 ± 8	16 ± 5	14	14	
21	Central America	10	29 ± 8	21 ± 7	30	14	(multiple options)
22	Columbia	7	22 ± 7	18 ± 5	22	14	
23	Peru	2	18 ± 5	16 ± 3	14	14	
24	Chile - north	22	31 ± 11	20 ± 5	20	14	
25	Chile - central	6	38 ± 8	23 ± 4	16	14	
26	Antilles - east	0			16	NA	
27	Sandwich - east	1	15	16	31	16	Vanneste and Larter (2002)
28	Sandwich - north	3	14 ± 2	24 ± 4	_	16	Vanneste and Larter (2002)
29	Puysegur/Fiordland	5	24 ± 11	24 ± 9	—	NA	Sutherland et al. (2006)
30	Kermadec	31	34 ± 14	26 ± 6	23	26	
31	Tonga	1	29	22	23	26	
32	New Hebrides	35	28 ± 12	31 ± 8	36	32	
- 33	New Britain	30	39 ± 13	27 ± 7	30 ± 5	27	
	Cotabato	2	31 ± 3	30 ± 7	_		
	Negros/Sulu	2	24 ± 8	28 ± 11	_		
	Luzon - east	2	29 ± 9	27 ± 1	_		
	Antilles - north	0			16		
	Chile - south	0			_		
	Solomon - east	20	24 ± 11	33 ± 12	—		$Miura \ et \ al. \ (2004)$
	Solomon - west	12	43 ± 13	40 ± 6	35 ± 5		
TOTAL		371					

Fluck, Hyndman, Wang (1997)

Engdahl et al. (2007)

The maximum moment magnitude interplate thrust

name	i	$M_w \max$		M_w max event — CMT			M_w max	event - here	Reference
	RK80	CMT	here	date	(lon, lat)	depth-km	date	(lon, lat), depth	
Andaman	_	9.0	9.2	2004.12.26	$(94.3,\ 3.1)$	29	CMT		Park et al. (2005)
Sumatra	7.9	8.6	8.6	2005.03.28	$(97.1,\ 1.7)$	26	CMT		СМТ
Java - west	7.1	7.7	7.7	2006.07.17	(107.8, -10.3)	20	CMT		СМТ
Java - east	(7.1)	7.8	7.8	06.02.1994	(113.0, -11.0)	15	CMT		CMT
Sulawesi	_	7.9	7.9	1996.01.01	$(119.9,\ 0.7)$	15	CMT		СМТ
Luzon - west	_	xx	7.0						
Philippine	_	7.5	7.5	1989.12.15	(127.0, 7.9)	37	CMT		СМТ
Ryukyu	8.0	6.6	7.0	1996.10.18	$(131.3, \ 30.5)$	22			
Nankai/Kyushu	_	xx	8.3				1707.xx.xx	(xxx, xxx)	<i>Aida</i> (1981b)
Mariana	7.2	7.0	7.0	2001.10.12	(145.1, 12.9)	42	CMT		СМТ
Izu-Bonin	7.2	6.5	7.0	2005.01.19	$(142.0,\ 34.0)$	15			
Japan - east	8.2	7.7	8.0	1994.12.28	$(143.0,\ 40.6)$	28	1896.06.15	(xxx, xxx)	Tanioka and Satake (1996)
Kurile/Hokkaido	8.5	8.3	8.5	2006.11.15	$(154.3, \ 46.8)$	13	1963.10.13	(xxx, xxx)	Kanamori (1970a)
Kamchatka	9.0	7.8	9.0	1997.12.05	$(161.9,\ 54.3)$	34	1952.11.04	(xxx, xxx)	Kanamori (1976)
Aleutian - central	(8.6)	7.9	8.7	1996.06.10	(-177.4, 51.1)	29	1965.02.04	(xxx, xxx)	Wu and Kanamori (1973)
Aleutian - east	8.6	6.9	8.6	1980.03.24	(-167.7, 53.0)	36	1957.03.09	(xxx, xxx)	Johnson et al. (1994)
Alaska	9.2	7.0	9.2	1989.09.04	(-157.2, 55.7)	26	1964.03.28	(xxx, xxx)	Kanamori (1970b)
Cascadia	_	7.2	9.0	1992.04.25	(-124.3, 40.2)	15	1700.01.26	(xxx, xxx)	Satake et al. (1996, 2003)

: : :

.

:

: : : : :

Jalasen(81)8.01990, 10.0(-10.4.8, 10.3)10CMTCMTCMTMexico8.18.01080, 00.0(-10.0, 17.0)21CMTCMTCMTCutral America(8.1)7.67.61090, 00.0(-87.8, 11.2)15CMTCMTManada MacMal(198)Colombia8.28.81900, 02.0(-87.8, 12.0)101040, 10.0(xxx, xx)Bacanada MacMal(198)Chule and S.8.81900, 02.0(-87.8, 2.1)0.101740(xxx, xx)Bacanada MacMal(198)Chule and S.8.81900, 02.0(-77.8, 2.0)101740(xxx, xx)Bacanada MacMal(198)Chule and S.8.82000, 02.0(-77.7, 3.9)4.11960, 02.0(xxx, xx)Manada MacMal(198)Antille and7.07.07.01001000, 02.0(xxx, xx)Manada MacMal(198)Antille and7.07.07.01001000, 02.0(xxx, xx)Manada MacMal(198)Antille and7.07.07.01001000, 02.0(xxx, xx)Manada MacMal(198)Antille and7.07.07.07.01000, 02.0(xxx, xx)Manada MacMal(198)Antille and7.07.07.07.07.01000, 02.01000, 02.01000, 02.0Antille and7.07.07.07.07.01000, 02.01000, 02.01000, 02.01000, 02.0Pageag/Photomic7.07.07.07.0										
Mexico8.18.08.09.040.019.040.01.01.019.01PMTPMTPMTPMTColmata8.88.78.89.070.219.785.3.10.09.001060.01.1(xx, xx)Amaran and Machall (1980)Peru8.88.78.89.090.219.082.1.09.051761.0.20(xx, xx)Backar And Machall (1980)Chile-entra9.58.78.89.001.0629.727.1.73.09.01680.01.2(xx, xx)Darbat (1990)Chile-entra9.58.79.79.09.77.7.33.09.11680.02.2(xx, xx)Darbat (1990)Chile-entra9.79.79.09.77.7.33.09.11680.02.2(xx, xx)Darbat (1990)Sandvich-entra7.69.79.09.77.7.33.09.119.00.12.2(xx, xx)Darbat (1990)Sandvich-entra7.79.79.09.79.719.019.019.019.0Sandvich-entra7.79.79.09.010.019.019.019.019.0Sandvich-entra7.87.99.09.010.019.019.019.019.019.0Sandvich-entra7.87.99.019.019.019.019.019.019.019.019.019.0Sandvich-entra7.87.99.019.019.019.019.019.019.019.019.019.019.0Sandvich-entra7.8<	Jalisco	(8.1)	8.0	8.0	1995.10.09	(-104.8, 19.3)	15	CMT		CMT
Netronal method(Net)7.67.61992.002(-87.8, 1.2)1.6CMTCMTCMTColombia8.88.18.81991.212(-78.8, 2.3)20196.01.3(-xx.xx)Anamora McNaly (198.0)Peru8.27.58.81906.021(-30.2, 1.0)1.6174.10.2(-xx.xx)Becard McNaly (198.0)Chile-ordm8.58.48.8201.06.2(-72.7, 1.7.3)3.0186.08.1(-xx.xx)Devator (199.0)Chile-ordm9.57.59.6185.03.8(-1733.0)4.1196.05.2(-xx.xx)Anamora (199.0)Chile-ordm7.57.59.67.59.617.517.517.619.617.517.6Sandwich-ordm7.67.79.01.07(-26.7, 6.7.6)15.619.02.7(-xx.xx)Anamora (199.0)19.6Sandwich-ordm7.67.79.01.01.07(-26.7, 6.7.6)16.619.02.7(-xx.xx)Anamora (199.0)Parager/Field7.87.7200.11.07(-26.7, 6.7.6)16.612.02.7(-xx.xx)Anamora (199.0)Merup7.87.87.919.6(-17.6, 2.7.7)17.617.62.01.717.617.6Merup8.87.87.919.6(-16.7, 2.4.7)18.6CMTCMTCMT17.6Merup8.87.87.919.6(-17.7, 2.9.7)17.617.617.617.617.617.6Nem Hame <td>Mexico</td> <td>8.1</td> <td>8.0</td> <td>8.0</td> <td>1985.09.19</td> <td>(-102.0, 17.9)</td> <td>21</td> <td>CMT</td> <td></td> <td>CMT</td>	Mexico	8.1	8.0	8.0	1985.09.19	(-102.0, 17.9)	21	CMT		CMT
Acomptone8.88.81970.1.2.(7.8.8, 2.9.1).01060.1.3(xxx, xx)Mamor Madd (Mal) (Mal)Peru8.87.58.81960.2.1.(8.2, 1.0.1).14.141.0.2.(xx, xx)	Central America	(8.1)	7.6	7.6	1992.09.02	(-87.8, 11.2)	15	CMT		CMT
Peru8.27.58.81960.2.1(-80.2, -10.0)151746.10.20(xx, xx)BekandNishehe (1990)Chile and the set of the set o	Colombia	8.8	8.1	8.8	1979.12.12	(-78.8, 2.3)	20	1906.01.31	(xxx, xxx)	Kanamori and McNally (1982)
Chile north8.58.48.82001.06.23(-72.7.17.3)301868.08.13(xxx, xx)Dorbah et al. (1990)Chile - central9.57.99.61985.033(-71.7.33.9)411900.022(xxx, xx)Kanameri and Ciper (1974)Antilles - eat7.57.57.0 <td>Peru</td> <td>8.2</td> <td>7.5</td> <td>8.8</td> <td>1996.02.21</td> <td>(-80.2, -10.0)</td> <td>15</td> <td>1746.10.29</td> <td>(xxx, xxx)</td> <td>Beck and Nishenko (1990)</td>	Peru	8.2	7.5	8.8	1996.02.21	(-80.2, -10.0)	15	1746.10.29	(xxx, xxx)	Beck and Nishenko (1990)
Chile endrage9.69.69.853.039.71.7.33.94.1900.05.2(xx, xx)Manama and apprendicts)Antiles endrage7.87.87.87.01.511.511.511.511.511.51Sandvich endrage7.06.07.01.521.	Chile - north	8.5	8.4	8.8	2001.06.23	(-72.7, -17.3)	30	1868.08.13	(xxx, xxx)	Dorbath et al. (1990)
Antilles ease7.59.x7.09.x7.09.x7.09.x<	Chile - central	9.5	7.9	9.6	1985.03.03	(-71.7, -33.9)	41	1960.05.22	(xxx, xxx)	Kanamori and Cipar (1974)
Sandwich-ease7.06.09.0<	Antilles - east	7.5	xx	7.0						
Sandwich norm(7.0)6.7.07.7.0200.11.07(-29.2, -55.3)161920.62.7(xxx, xxx)Gutenberg and Richter (1940)Puysegur/Fordund7.7.07.8.17.7.0	Sandwich - east	7.0	6.9	7.0	1987.01.30	(-26.8, -60.7)	15			
Puysegur/Fiordand - 7.3 7.3 1979.0.12 (1658, -46.5) 20 CMT CMT Kermadec 8.1 7.9 7.9 1976.0.114 (-176.9.297) 47 CMT CMT<	Sandwich - north	(7.0)	6.7	7.7	2000.11.07	(-29.2, -55.3)	16	1929.06.27	(xxx, xxx)	Gutenberg and Richter (1954)
Kermader 8.1 7.9 7.9 1976B.01.14 (-176.8, -28.7) 18 CMT CMT CMT Tonga 8.3 7.5 1976A.01.14 (-177.0, -29.7) 47 CMT CMT CMT More Hebrides 8.3 7.5 1982.12.19 (-175.1, -24.3) 29 CMT CMT CMT CMT New Hebrides 7.9 7.7 1980.07.17 (166.0, -12.4) 34 CMT CMT CMT CMT New Britain - 7.8 7.3 2000.11.16 (153.2, -5.0) 31 1987.10.16 (149.4, -6.2), 48 CMT CMT CMT New Britain - 7.8 7.3 2000.11.17 (153.3, -5.3) 17 1987.10.16 (149.4, -6.2), 48 CMT CMT CMT Negros/Sulu - 8.0 1976.06.14 (122.4, 8.2) 30 CMT CMT CMT CMT Luzon - east - 7.2 7.2 1977.03.18 (122.4, 8.2) 30	Puysegur/Fiordland	-	7.3	7.3	1979.10.12	(165.8, -46.5)	20	CMT		CMT
Image: state of the state	Kermadec	8.1	7.9	7.9	1976B.01.14	(-176.8, -28.7)	18	CMT		CMT
Tonga 8.3 7.5 7.5 1982.12.19 (.175.1, .24.3) 29 CMT CMT CMT New Hebrides 7.9 7.7 7.7 1980.07.17 (166.0, -12.4) 34 CMT			7.8		1976A.01.14	(-177.0, -29.7)	47	CMT		CMT
New Hebrides 7.9 7.7 1980.07.17 (1660, -12.4) 34 CMT CMT CMT New Britain - 7.8 7.3 2000.11.16 (153.2, -5.0) 31 1987.10.16 (149.4, -6.2), 48 CMT CMT CMT Cotabato - 7.8 7.3 2000.11.17 (153.3, -5.3) 17 CMT	Tonga	8.3	7.5	7.5	1982.12.19	(-175.1, -24.3)	29	CMT		CMT
New Britain - 7.8 7.3 2000.11.16 (153.2, -5.0) 31 1987.10.16 (149.4, -6.2), 48 CMT Cotabato - 8.0 8.0 1076.08.16 (123.8, 7.1) 33 CMT CMT CMT Negros/Sulu - 6.9 7.0 1976.08.16 (123.8, 7.1) 33 CMT CMT CMT Luzon - east - 6.9 7.0 1976.08.16 (122.4, 8.2) 30 CMT CMT CMT Chile - south - 7.2 7.2 1977.03.18 (122.6, 16.4) 35 CMT CMT CMT Antilles - north - 7.2 7.2 1977.03.18 (122.6, 16.4) 35 CMT CMT CMT Antilles - north - 7.2 7.0 1977.03.18 (122.6, 16.4) 35 CMT CMT CMT Solomon - west - 7.0 7.0 1988.08.10 (160.8, -10.5) 16 CMT CMT CMT	New Hebrides	7.9	7.7	7.7	1980.07.17	(166.0, -12.4)	34	CMT		CMT
Image: Note of the south o	New Britain	-	7.8	7.3	2000.11.16	(153.2, -5.0)	31	1987.10.16	(149.4, -6.2), 48	CMT
Cotabato - 8.0 8.0 1976.08.16 (123.8, 7.1) 33 CMT CMT Negros/Sulu - 6.9 7.0 1978.06.14 (122.4, 8.2) 30 - CMT CMT Luzon - east - 7.2 7.2 1977.03.18 (122.6, 16.4) 35 CMT CMT Chile - south - xx 7.0 - - 7.0 CMT CMT Antilles - north (7.5) xx 8.0 - 1843.02.08 (xxx, xxx) Robson (1964) Solomon - east - 7.5 1988.08.10 (160.8, -10.5) 16 CMT CMT Solomon - west - 7.7 7.6 1995.08.16 (153.6, -5.5) 46 1975.07.20 (155.1, 6.6), 16 Lay and Kanamori (1980)			7.8		2000.11.17	(153.3, -5.3)	17			
Negros/Sulu - 6.9 7.0 1978.06.14 (122.4, 8.2) 30 Image: Component of the source of t	Cotabato	-	8.0	8.0	1976.08.16	(123.8, 7.1)	33	CMT		CMT
Luzon - east - 7.2 7.2 1977.03.18 (122.6, 16.4) 35 CMT CMT Chile - south - xx 7.0 - xx 7.0 - <td< td=""><td>Negros/Sulu</td><td>-</td><td>6.9</td><td>7.0</td><td>1978.06.14</td><td>(122.4, 8.2)</td><td>30</td><td></td><td></td><td></td></td<>	Negros/Sulu	-	6.9	7.0	1978.06.14	(122.4, 8.2)	30			
Chile - south - xx 7.0 Image: Chile - south <td>Luzon - east</td> <td>-</td> <td>7.2</td> <td>7.2</td> <td>1977.03.18</td> <td>(122.6, 16.4)</td> <td>35</td> <td>CMT</td> <td></td> <td>CMT</td>	Luzon - east	-	7.2	7.2	1977.03.18	(122.6, 16.4)	35	CMT		CMT
Antilles - north (7.5) xx 8.0 1843.02.08 (xx, xx) Robson (1964) Solomon - east - 7.5 7.5 1988.08.10 (160.8, -10.5) 16 CMT CMT Solomon - west - 7.7 7.6 1995.08.16 (153.6, -5.5) 46 1975.07.20 (155.1, 6.6), 16 Lay and Kanamori (1980)	Chile - south	-	xx	7.0						
Solomon - east - 7.5 7.5 1988.08.10 (160.8, -10.5) 16 CMT CMT Solomon - west - 7.7 7.6 1995.08.16 (153.6, -5.5) 46 1975.07.20 (155.1, 6.6), 16 Lay and Kanamori (1980)	Antilles - north	(7.5)	xx	8.0				1843.02.08	(xxx, xxx)	Robson (1964)
Solomon - west - 7.7 7.6 1995.08.16 (153.6, -5.5) 46 1975.07.20 (155.1, 6.6), 16 Lay and Kanamori (1980)	Solomon - east	-	7.5	7.5	1988.08.10	(160.8, -10.5)	16	CMT		CMT
	Solomon - west	_	7.7	7.6	1995.08.16	(153.6, -5.5)	46	1975.07.20	$(155.1,\ 6.6),\ 16$	Lay and Kanamori (1980)

Tonga : 10.1 = 7.95 + 0.0133 (230) - 0.00879 (104)

Nicaragua : 8.74 = 7.95 + 0.0133 (72) - 0.00879 (19)

|R| = 0.4425 for n = 141

If we FORCE the model to have Vc and A, then we obtain a very poor fit.

--> Vc and A do not explain the variation in Mw in the new data set.

R = 0.7555

$$\alpha_i = 21.8 + 7.4 O + 8.1 E + 1.03 \sqrt{A} - 0.036 SA$$

|R| = 0.7856

A steeper intermediate dip is promoted by:

a younger subduction zone

an older subducting slab

an upper plate that is oceanic

a subduction transect near the edge of a subduction zone

$$\alpha_i = 21.8 + 7.4 O + 8.1 E + 1.03 \sqrt{A} - 0.036 SA$$
 $|R| = 0.7856$

alphaI ~ SA + A + iO + iE Estimate Std. Error t value Pr(>|t|) (Intercept) 21.821523 2.578544 8.463 3.84e-14 *** SAp -0.036061 0.009163 -3.935 0.000132 *** Ap 1.034575 0.241451 4.285 3.45e-05 *** iO 7.428971 1.431568 5.189 7.57e-07 *** iE 8.069908 1.398924 5.769 5.21e-08 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.37 on 135 degrees of freedom Multiple R-Squared: 0.6171,Adjusted R-squared: 0.6058 F-statistic: 54.39 on 4 and 135 DF, p-value: < 2.2e-16

$$\alpha_d = 73.39 + 8.9 O - 0.17 V_{\rm cmp} - 0.090 SA$$

$$|R| = 0.7214$$

A steeper **deep dip** is promoted by:

- a younger subduction zone
- an upper plate that is oceanic
- a lower convergence velocity

A greater **Mw-max** is promoted by:

- an older subduction zone
- a greater sediment thickness at the trench

Summary

- 1. We have compiled a comprehensive set of subduction zone parameters for 159 transects.
- 2. The analyses of Ruff and Kanamori (1980) and Jarrard (1986) are excellent, given the data sets available at the time.
- 3. Initial results of linear regression using the new dataset suggest that :
 - 1. The relationship Mw(Vc, A) of Ruff and Kanamori is not valid.
 - 2. Mw depends on the long-term evolution of the subduction interface (SA, age of subduction zone).
 - 3. Intermediate dip depends on SA, age of plate, whether the upper plate is oceanic, and whether the transect is near the edge of a subduction zone.
 - 4. Deep dip depends on SA and Vc and whether upper plate is oceanic.

What parameters did we ignore?

- Strain class of upper plate
- 1. Wedge taper angle
- 2. Arc-trench distance, width/depth of seismogenic zone, etc

Accretionary plate margins

Clift and Vannucchi (2004)

Song and Simons (2003)