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Overview

» Objective: Monitoring natural phenomena involving
Earth’s surface dynamics, e.g., earthquakes, volcanoes,
glacier flow, landslides, sand dunes migration, etc...

» Motivation: To validate/calibrate/refine physical models.
To improve early evaluation of damage for large disasters

» Approach: Measuring horizontal ground deformations
from optical satellite images: SPOT 1-2-3-4 (10 m), SPOT 5
(5m and 2.5m), ASTER (15m), Quickbird (0.7 m), Aerial
photographs (0.25-1m)



Measuring deformation: a toy example
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The 1999 Mw 7.1 Hector Mine Earthquake
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The Hector Mine horizontal coseismic field (NS and EW) derived from 10m
SPOT4 1998 and 10m SPOT2 2000 images.



In this 2-session lecture + 1 lab, you will (should...)
learn:

» The basic theories, methodologies, and trade-offs involved
to produce horizontal deformation maps from optical data,

» How to interpret/estimate the quality of the deformation
maps produced by understanding potential biases,

» How to use the COSI-Corr (Co-registration of Optically
Sensed Images and Correlation) software, which will assist
you in all the processing tasks involved.



The viewing geometry of optical sensors

Questions: Identify the move between these two shots. What did your brain
had to do to come up with the solution?



The viewing geometry of optical sensors

Image acquired with almost similar viewing geometries



The viewing geometry of optical sensors

Image acquired with almost similar viewing geometries



Images must be compared in the same geometry

» Images must be re-projected in a common geometry to be compared.
Infinitely many possible projections: any arbitrary common viewing
geometry is theoretically valid: in which geometry images should be
analyzed?

» Try to find a viewing geometry that minimizes geometrical “stretch” on
both images during re-projection: application dependent, but global
trends exist:

> Radar interferometry: images acquired with short baseline.
Almost similar viewing geometry, common viewing geometry
defined as the viewing geometry of one of the images
(master/slave)

> Same idea also encountered for optical sensors. However, optical
sensors have no baseline constraints and images can have very
different viewing geometries. Can define an “intermediate”
viewing geometry, independent of the images (more flexible to
compare images from several different sensors). Images analyzed
in orthorectified geometry.



SAR vs Optical viewing geometries

Image 1 Virtual image Image 2

SAR images are usually analyzed (e.g., INSAR applications) by taking one of
the image as the reference geometry. Due to the largest disparities in viewing
geometries, optical images are usually analyzed using intermediate
projections. They are commonly orthorectified, meaning that they are
reprojected on the ground, accounting for the topography. In Orthoimages,
each pixel is as if it was seen exactly from above. Proper projection of images
depends on the proper modeling of the acquisition sensor.
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Figure 6.1 Along-track or pushbroom scanner. The pixels of an
entire swath width are captured at one time, so the image s built up a
fow at a time in the direction of travel,i.e., along the ground track.

width (15-60km) - SPOT, ASTER, Quickibird, Ikonos, etc...
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Figure 6.3 Across-track or whiskbroom scanner. An across-track

scanner builds up an image one pixel at a time as it scans the terrain

perpendicular to the direction of travel.

Frame camera: very high resolution imaging (1-100 cm GSD), limited footprint (1-10km) - aerial surveys,

Pushbroom systems (main focus in this lecture): high resolution imaging (0.5-3 0m GSD), medium swath

Whiskbroom systems: medium-low resolution (30-1000 m GSD), large swath (100-1000 km), multispectral -



Orthorectification Model
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> O, optical center in space

> M, ground point seen by
pixel p

> 1i; pixel pointing model

» R(p) 3D rotation matrix, roll,
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» T(p) Terrestrial coordinates
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Orthorectification: Look Direction Correction

Look direction discrepancy
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Orthorectification: An Irregular Mapping

Trajectory image plane
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Image pixels are assumed to regularly sample the image plane, but they sam-
ple the ground irregularly



Orthorectification: An Irregular Mapping
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Orthorectification: An Irregular Mapping
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Orthorectification: Inverse Model Principle
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Resampling: general approach
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Figure 3.11: The four steps of ideal resampling: reconstruction, warp, prefilter, and sample.



Resampling: practical implementation
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Figure 3.12: Resampling filter block diagram. Top: conceptual model. Bottom: implementation.



Resampling: 1D ideal case
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Resampling . popular convolution-based interpolation kernels
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Ortho—Resampling . a simple particular case using NN kernel

Inverse orthorectification

mapping
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» Kernel locally warped according to local mapping warp (warping
usually linearized locally = Jacobian of ortho-mapping)

» In practice, use higher order (sinc-like) kernels for better resampling
quality



Image Correlation: problem formulation

Given two images i; and ip such that

ib(x,y) = i1(x — A,y — Ay)

how to retrieve the translation (Ay, Ay)?

Generally, problem formulated as:

Find (Ay, Ay) such that S(iy (x, ), i2 (x + Ay, y + Ay)) is maximum, for some
similarity measure S.

» Which similarity measure S should we use?

» How to achieve sub-pixel accuracy?



Image Correlation: popular similarity measures

» Sum of Squared Differences (SSD)
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» Normalized Cross-Correlation (NCC), or Correlation Coefficient
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» Phase Correlation based on Fourier Shift Theorem
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Image Correlation: popular similarity measures
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Fig. 1. (a)and (b) Aerial images of Paris with displacements along both axes, (c) standard cross-correlation, and (d) phase correlation.




Image Correlation: subpixel accuracy

> Correlation surface computed for integer values of (Ay, Ay) comprised
in a search area. Then interpolation of the correlation surface near the
maximum, or fit to a smooth surface, e.g., Gaussian. Easy
implementation but not very accurate because interpolation model for
correlation surface not always well known.

» By introducing a subpixel shift between images to be correlated via
interpolation/resampling. The image is shifted by resampling, the goal
being to find the best resampling shift that maximizes the similarity
function. Implementation more complex but accuracy can be up to an
order of magnitude better than previous method.

> If we solve the registration problem in the Fourier domain directly,
image resampling becomes implicit and can lead to faster algorithms
using FFT (best of both worlds?).



Image Correlation: what we do in COSI-Corr

» Fourier Shift Theorem
(x,y) =i1(x — Ay, y — Ay)

I (wy, wy) = I (wy, wy)e—j(wax+wyAy)

» Normalized Cross-spectrum
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Image Correlation: so which similarity measure is best finally?

» The NCC method usually performs better than the SSD because it is insensitive
to linear transformations in image intensities. Indeed, photometric differences
due to change in illumination, which are always encountered in practice with
images acquired at different time, can be locally modeled as linear contrast
changes.

» NCC and SSD are based on second order statistics and can be viewed, from a
Bayesian approach, as the best solution when images are corrupted with
additive Gaussian white noise. In other words, these methods consider that the
displacement to be found is exact, and that images amplitude only, contains
noise.

»> Normalized phase correlation methods are also insensitive to linear contrast
change. However, the noise formulation is quite different. From a Bayesian point
of view, the noise can be considered Gaussian-like on the displacement, while
images are considered noise free! Indeed, we can write:

() = Lfet = =2 )1 - cos(w(a - )]

Then minimizing @ is equivalent to maximizing, over A,

I, W' (w) cos(w(A—Ax))
Clw)

This is Von-Mises distribution on the phase shift, then Gaussian-like distribution
onA.



Image Correlation: so which similarity measure is best finally?

» Conclusion: The phase correlation method will provide more accurate
results when the images have a low noise level, and when some
deviation from the rigid translation model is expected. This is often the
case in practice and the measure provided can be seen as the average
displacement over the correlation window.

» At high noise level, NCC methods usually perform better than phase
correlation methods, but using iterative re-weighted methods on W
mitigates the strong noise-free requirement of the images in the phase
correlation formulation and adds some robustness to the solution.



Processing Chain
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Processing Chain
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1999 Mw 7.1 Hector Mine Earthquake, CA
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The 1999 Mw 7.1 Hector Mine Earthquake
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The Hector Mine horizontal coseismic field (NS and EW) derived from 10m
SPOT4 1998 and 10m SPOT2 2000 images.



The 1999 Mw 7.1 Hector Mine Earthquake
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» Horizontal slip vectors measured from linear least square adjustment
on each side of the fault. Perpendicular profiles are stacked over a
width of 880 m and a length of 8 km.

Field measurements from J.A. Treiman et al., BSSA, 2002



The 1999 Mw 7.1 Hector Mine Earthquake
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Figure 2. Interferometric coherence, C, for IPI,
With € > 0.8 set to be transparent. Brown lines in-
dicate known faults (Jennings, 1994). Surface rupture
as observed in the field is indicated by the blue line
(Treiman et al., 2002). UTM zone 11 projection with
origin at (116.457W 34.250N).

M. Simons et al., BSSA, 2002
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Figure 3. Same as Fig. 2 but color indicates
wrapped phase for IPL. Each color cycle represents
2.8 cm of motion in the line-of-sight (LOS) direction.
The black arrow represents the horizontal projection
of the LOS vector toward the satellite.
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Figure 5. Same as Fig. 3, but color indicates AZO

observations. Arrows represents the horizontal com-
ponent of motion indicated by the respective colors.
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Optical Correlation and SAR Complementarity

» Optical Image Correlation:

>

v
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» SAR:
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The larger the displacement, the higher the technique SNR. Technique
mostly usefully to measure large deformation gradients,

Mostly sensitive to horizontal component of ground deformation,

Can be used to measure change over long time periods,

Images from sensors with different geometry, orbit, and resolution can be
correlated, potentially huge archive

Can correlate on sand, ice even with some ice melt (passive sensor)
Images contain aliasing, which limits correlation accuracy

Very sensitive to weather condition (clouds), no night imaging for visible
bands

Amplitude correlation on speckle pattern

Azimuth (and range) offsets

Fairly insensitive to weather conditions + night and day imaging
Analysis only from images acquired with identical geometry. Shadow
casting depends on radar orientation and surface reflection properties
Images with little aliasing

Little backscattering on sand, or different backscattering on ice melt

» InSAR:

> Sensitive to ground deformation in range direction

> Very accurate but loss of coherence when displacement gradient too
large (depends on radar wavelength and pixel size),

> Temporal decorrelation due to change in scatterer geometry

> Path delays due to tropospheric/ionospheric structure
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