Can 3D models be used for Geological Studies?

Temoc Rodriguez Steven Tan Alex Day-Blattner

~1 m

Summer Research Connection Tectonics Observatory at Caltech August 3, 2012

What do geologists do?

 Measure changes in landscape

Find ages of rocks

Forecast
 earthquakes

Caltech Tectonics Observatory

Photograph copyright by David Lynch. http://epod.usra.edu/blog/2006/12/aerial-photo-of-wallace-creek-and-san-andreas-fault.html

What do geologists do?

- Precariously Balanced Rocks (PBRs) using Terrestrial Laser
 Scanning
- Link to fault activity beneath Los Angeles

What tools do geologists use?

http://www.monasheesurveying.com/images/gps.jpg

Emergence of new software

- Modeling software used by engineers to design
 New free programs
 - Opportunity to experiment with possible applications

What if all you needed in the field

was a camera?

Revolutionize work product

Can software be used to convert pictures into 3D models useful to geologists?

Can we do it?

- If so, what is the best strategy?
 - Start small and work up to geological scale
 - Incorporate findings into new models
 - Develop a procedure for geologists to follow to produce successful models

From 2D to 3D using 123D Catch

Input: 53 pictures

Output: 3D model

Getting started with 123D Catch

Two perspectives

http://upload.wikimedia.org/wikipedia/commons/7/7c/Aufnahme_mit_zwei_Kameras.svg

Finding corresponding points between pictures

Seeing a tree from two angles

123D Catch matches pixels & triangulates camera position

💿 🐠 exifelata

Getting started with Meshlab

Visualizing models using Meshlab

3D Textured Model

3D Texture-less Model

3D Mesh

3D Point Cloud

Getting started making models

• What we were told:

- Do not use flash
- Start with small objects
- Look for varied textures
- Take pictures from a wide range of angles

Getting started making models

• Questions that needed answers:

- How many pictures are needed?
- Where to take the pictures from?
- How much overlap between pictures?
- Can you make measurements from the models?
- Can GPS coordinates be assigned to the model?

• Q: Can 123D Catch and Meshlab be used to create 3D models for geological research?

Highly detailed model

• 33 Pictures

FOV: 60

2 concentric circular paths

utrition Facts

Screenshots of model in Meshlab

Best path for pictures is from the outside facing in

Quad N Mudd – from inside-out vs. a rock pictured from outside-in

Best path - continuous

Moving to take pictures is necessary

Symmetry confuses 123D Catch

- Pictures taken in "best path" order
- Complete information about all sides provided
- 123D Catch used symmetrical features to generate the model.
- Not a problem for geologists

Measuring from bank to bank

Water does not show in mesh
Can still measure bank-to-bank

Above – Picture of Turtle Pond

Left - Screenshot of model in Meshlab

Stitching emphasizes the need to have 4 distinguishing features
Pictures are left out of models because 123D Catch cannot recognize where it fits in.

Fine tuning models: Stitching

• Can "stitch" pictures into the model by manually matching pixels

- Time consuming
- Introduces new errors

Fine tuning meshes: Merging

• For larger projects, merging helps:

- Reduce picture load per person
- Reduce processing time

Fine tuning meshes: Merging Merging can be used to increase detail.

Measuring in Meshlab

- Define reference distance in 123D Catch
 Export model & view in Meshlab
- 3. Measure in Meshlab. $(\pm 5 \text{ cm})$

300 cm

Moving into the field Vasquez Rocks County Park

Vasquez Rock model

An almost complete model of a 5 m tall rock at Vasquez Rocks

Conclusions

• Yes we can use the free software

X

- Different cameras
- Different users
- GPS Coordinates
- Measure features

• Geological features 🧳

Conclusions

A General Protocol:

- No flash
- Carefully plan photograph pathway (occlusions, vegetation, circular path)
- 4+ Distinguishing features between every other picture
- Start far away, move closer for additional detail
- More photos, can discard later

Future directions

- Incorporate aerial pictures
 Attach GPS Coordinates
 Make detailed measure models
 - Profiles, slopes, and curves

Acknowledgements Many thanks to:

Tectonics Observatory Francois Ayoub Sebastien Leprince Luca Malatesta James Hollingsworth Laurie Kovalenko

SRC – Sherry Tsai and James Maloney

Sponsors Tectonics Observatory Siemens Foundation Howard Hughes Medical Institute National Science Foundation

