Notes from two lunchtime workshops with Caltech Classroom Connection
- about how to present science to kids

Workshop #1
December 4, 2008
CCC team: James Maloney, Jen Franck, Tara Gomez
Participants: Nina Lin, Willy Amidon, Alan Chapman, Steve Kidder

Connect with the kids – you were a kid once!
 • Introduce yourself, ask them their name
 • Say what you do, ask them what grade they are in

What are your goals?
 • Show what scientists do
 • Show that science is accessible to everyone
 • Inspire kids to learn more science
 • Have fun!

Engage the kids
 • Have hands on activities, such as
 o Drawing on balloons – for stress and strain
 o Triangulation exercise – for locating earthquakes
 o Cutting clay pictures – for faults
 o Sheets covered in dots – for how big is a million
 o Slinky – for s and p waves
 o Different kinds of rocks – metamorphic

Ask questions, such as
 • What do you notice about ...
 • Why is there a mountain?
 • Why does this rock look like this?

Use analogies, such as
 • Liquefaction is like your feet in the sand at the beach
 • Locating the distance of and earthquake with S and P waves is like locating
 the distance of lightening using the time difference between seeing the
 lightening and hearing the thunder

Also, have free goodies
 • Pens, stickers, hats, geology kits

And please include:
 • Caltech’s Tectonics Observatory
 • TO website: http://tectonics.caltech.edu/outreach
 • Thanks to Henry and Betty Moore Foundation
Afterwards, evaluate how it went:
 • Look at their body language. Did they smile? Did they ask questions? Were they happy?

Workshop #2
May 12, 2009
CCC team: James Maloney, Tara Gomez
Participants: Willy Amidon, Steve Kidder, Nina Lin, Anthony Sladen, Aron Meltzner

General strategies:
 • Learn through experience.
 • Define your learning objectives. Then pick activities that best help do this.
 • Different types of learning: visual, kinesthetic …
 • Use probing questions
 • Use scientific method – ask what they expect to see, write answers on the board, do the experiment, compare with predictions
 • Have something that they can take home – rock collection, magnifiers
 • Teach something cool about science, and how this is important to everyone, even those who will not be scientists.
 • Can point out science is teamwork (some go in field, some do calculations, some do lab experiments), international.

Classroom visit:
 • Give email to teacher for follow-up questions.

Eaton Canyon:
 • Make sure there are at least 2 adults for each group
 • Have patience!
 • Give high energy students extra jobs
 • Have eye contact with each kid so they feel connected as well as stay in line
 • Don’t always lead like a mother duck; be inside the group as well
 • No ipods
 • Could say, at the beginning, “What do you expect to see?” Write this down. Then at end of hike can review.
 • Things to discuss:
 o Faults, rock types, weathering, patterns, waterfall
 • Have activities ready for during breaks.
 • Some activities:
 o Work sheet with names of things to find, or with actual photos (can work in teams, and can get prize)
 o Count the number of times you see something, such as a certain type of rock.
 o During lunch break, could sketch something
o Use notebook for observations, reflections, diagrams, questions.
 ▪ See: sciencenotebooks.org
o Maybe have a few vocabulary words in mind. Then:
 ▪ What do you see?
 ▪ Geologists call this ….;
 ▪ Write in notebook “A fault is ….’Brien
o What are the important features? Draw them.
 • One strategy: Talk about something. Then ask “What do you see over there?”

Science Fair:
 • Nina’s idea for outreach activities that have K-6th grade: make their own rock collection.

TO Tours:
 • As you meet the students, welcome them to Caltech and to your lab.
 o Introduce yourself. Let them know where you are from. Ask them if they know what a graduate student / postdoc is. Tell them where you went to undergrad school.
 o Let them know how you became interested in science; why you are working in science
 o Let them know what else you like to do besides science – what are your hobbies?
 • Discuss and show your cutting edge science
 • Tell them one question you are trying to answer, such as
 o An experiment you are trying to perform
 o A scientific claim you are trying to make and HOW you know it is true
 o A tool you use in your research (e.g., glove box, mass spec, computer…)
 o The broader implications of your work
 o Highlight that experiments fail
 o Mention where your funding comes from
 • Check to see that students are engaged by asking them questions all along, such as
 o Can anyone tell me about …