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Introduction Numerical Methods Numerical Experiments Next Steps

Numerical studies of plate tectonics have previously suffered from poor || In order to invert for the weak zone values at plate boundaries, we | [Case I: Weak Zone with Subducting Plate
resolution until recent models using Adaptive Mesh Refinement (AMR) in || need to solve the forward and adjoint equations given in (2) and (5).
Stadler et. al (2010), and Alisic et al. (2012). While the studies provided || Since the forward equation is nonlinear , we would need to used
resolution as fine as 1km at plate boundaries, a more accurate model can be || Picard iteration.

attained by using inverse methods that are applied to the equations that
govern mantle convection.

We have developed a robust and scalable method to invert for the
For Case |, there is a reduced viscosity zone to the left of the subducting || prefactor of the weak zone. The next phase would be to apply this
plate, which acts essentially like a ridge as shown in Fig. 2(a). For this case we || methodology to global models with realistic temperature fields etc. as
invert for the prefactor of the ridge, plate and background. We are able to | shown in Fig. 8.
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of (2) with an initial
with guesses of the prefactors of the slab, weak zone and background that

theweakform recover the surface velocity Fig.2(b) almost exactly. In this case, we started -

are substantially off from the true values, but are still able to recover the

Mathematlcal DEVEIOpment ghven in (3 withthe exact values by iteration 14 in Fig.2(c), while driving the misfit of surface

velocity obtained

from solving (2). o, 0 o o o o
The inverse problem is given as follows where we seek to minimize the misfit velocities in (1) to a substantially small values shown in Fig. 2(d).
in surface velocities given in (1), where I'is the prefactor of contained in the || However, Picard Iteration can be slow when converging to the (a) . — ) " s—-—
rheological law we are using. actual solution. Therefore, we can solve (2) by posing the problem §°
. ) as an optimization problem like (1). This minimization problem is o 3 I, Tuecumovaey |
min/ = u—1u ds 1 . : z 7
r / f55 | true! 1) given in (9). | y | - . 9 | | -
5 n+1 . | | .- | o % 05 1 15 2
. . . . . . - . — _Tl 2n . . C f : d 10°
Subject to the PDE constraints given in (2) with free slip boundary conditions. lrlnln] 2~ fg (n+1 e —frudl) (9) () /\“’_ e ) o
V-u=0 As a comparison, we did a test case for a sinker for n=3, and the | t“ | |
. _ — results are shown in Fig. 1, where we can see the residuals e B E ’
V- In (we(w) pl]=f (2) d fast : Ng ton’ thod Picard Iterati e d e s do 12 N MU U R R Figure 8 : Example of global models with fine scale resolution that will be used for
ecrease faster using a Newton’s method vs. Picard Iterations. inversion taken from Alisic et. al.(2012)
The PDE . i (3 is th ' Stok . T (a) " " « (b) | | | | Figure 2 : (a) Eff. Viscosity (b) Surface Velocity Comparision (c) Inverted Quantities vs. A le of h ] i the rheological | lead
e constraint in (2) is the nonlinear Stokes equations, with the " ot o * iteration (d)Misfit of Surface Velocities vs. lterations. n example of how varying parameters in the rheological law can lead to
nonlinearity arising from the viscosity dependence on the velocity. The | — _ _ . _ mismatches in surface velocity is shown in Fig. 9 below. By inverting for
viscosity 17() is given below in (3). It should be noted that the prefactor I is jj:’ - i s | Case II: Multiple Subducting plates and weak zones with varying pre- the values of the weak zones where we minimize the mismatch in said
given in the form of an exponential to ensure that it remains positive at factors surface velocities, we can achieve a better fitting model with the
each iteration during an inversion. ; I . For Case I, we look to invert for the prefactors for multiple weak zones as properly constrained surface velocities.
n(w) = FE(l—n)/n — . S a 2N 1" : T ; . shown below in Fig. 3. This type of problem is one that we will be interested @ n=3.0,0,= 100 MPa ) 7=5.0.0, =800 MP:
1 3) e since it is geometrically close to the geophysical problem posed. N -
. { el 0, Figure 1 : (a) Eff. Viscosity for a sinker (n=3) ( b) Residual Comparision
(et Q\UE Qi To solve (8), we use an inexact Newton Method with )
backtracking line search. This line search is the Armijo line search 1
To set up the inverse problem, we need to define the Lagrangian [ defined in given below in (10). - 0
(4), which is the sum of the cost functional and the weak form of (2). dpo1= dy + ak’c‘[ (10) Ca B I - - o S "
Figure 3 : Domain consisting of the prefactors defined on each stencil.
Lw,p) =]+ [ Inwew):e(w) —pV-v —qV-u — f - v]dQ We use the algorithm presented previously to invert for the prefactor of each
(4) Where, ay is given below by (11). weakzone given in (3). It should be noted that the smallest prefactor is the
If one takes variations with respect to the forward velocity and pressure ao=1p=0.5 \A;:akt.zone. on Te flart I,Eft.Wh'I,e’ :he::fhles'c prefactor is on the far right. The
: : : . .. . _ effective viscosi ot is given in Fig. 4 below.
(u,p), the forward equation (2) is obtained. However, if variations with X = PAg—1 11) yP 8 8 Figure 9: Example of the misfit of surface velocities for global models for various
respect to the adjoint velocity and pressure is taken, one obtains the adjoint | "T 7“ e . erturbations of rheological parameters taken from Alisic et. al.(2012
eqtljoation in (5) ‘ y P ’ ‘ We only accept a solution for the weak factor if the following " \# f \ i P sital P ( )
' Vv =0 condition in (12) is satisfied. B | | ’ Additionally, we will look at regional models like the ones shown below
1-1 e(W)®ew) B r < I(T,) + T o 12) % 1 2 3 ‘ 5 6 - 8 o 10 in Fig. 10 where there is better data coverage in order for the quality of
V@) + e(v) —ql] =0 (5) J(Te1) = (i) + cargy di Figure 4 : Effective Viscosity plot after the final inversion. the inversion is better due to more information being available in certain
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The plot of the inverted surface velocities in comparison for the true surface|| regjons.
which shows we are able to essentially recover the exact surface velocity as| .,
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Figure 5 : Surface Velocity Comparison.

Subject to the boundary conditions given in (6), where 7l denotes the normal
vector . The Details of the Algorithm for the inversion of the prefactors for

v-n=0 weak zones are given in the flow chart below.

[1— 71 Q n][n(w) (I T Lon e®clw) e(v) — qI] n=—(u- ud)ltop (6)
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In looking at the adjoint equations in (5)-(6), one can see that the driving
term is the mismatch in the surface velocities that is driving the equation as
seen in (6).

In Fig. 6, we are able to recover the true prefactors for each weak zone almost
exactly by 2 Gauss-Newton Iterations.
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Moreover, to obtain the Newton system, one will need to take the second
variations of (4). Doing so, and using the Gauss-Newton approximation of
the Hessian leads to the system of equations to be solve for the incremental

Solve Forward Equation with I; | i/\\/%&
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| olve Adjoint Equation |

Prefactor

inverted prefactor of left most weak zone

values @, T, ¥ in (7). $ [T e retactor of e il vk rone
] 1 - ' : E:EZ E:ZEZEEZ: %EEE Im?;mvtvtavljk ] Figure 10: Various Regional models with their corresponding effective viscosity and
Wi, 04 u Yup 10°- ;1 : : 5 velocity fields, taken from Alisic et. al.(2012)
T| |7 = . x .
g gC E — - ggr (7) Figure 6 : Prefactor Inversion vs. Iterations
O v vq F D. [ ]
- - - - In Fig. 7, we are able drive the misfit of surface velocities defined in (1) to Utu re II‘ECtIOﬂS

significantly small values.
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Using Block Matrix Algebra, (7) amounts to solving (8). * Forthcoming investigations will use a non-Newtonian rheology with

yielding that is widely used for mantle convection problems.

cTA W, A71CT = — f : . . . -

T CTA‘L”TW A-1c gr (8) s * Investigate adding noise to the plate velocities to test the limits of
- uu 1077 | how well we can recover the strength of the weak zones.

HI' = —gr 10" : : : : -  Apply these inverse methods to global plate motions and infer the

Gauss Newton lterations

Figure 7 : Misfit of Surface Velocities strength of plate coupling at convergent plate boundaries.




