Response of rate-and-state faults to periodic variations
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Ta/ T = 2.5. The parameters are the same as in the pre-
vious figure, except for the fault parameter 4 = 0.00385 T T T R ST~ R
and D_ = 0.5 mm, so that A = |A(w)| = 1.08(a-h) = S5 RTINS N R e ENERNIE S SN S SR H UL S U ) V V V V V
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legend. Upper panel: Amplitude of the creep rate varia- S ——————————
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and Parkfield are sensitive to oscillatory stress perturbations induced by tides or seismic : I I N U e

surface waves. On the seismic side, the microseismicity rate in the Nepal Himalaya ap-
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pears to be modulated by the surface load variations of about 3kPa induced by the hy-

o | ; | | ; §V P BRI .

e |- | § | | " | .

a
N
I
A}
\
1
1
|
1
|
I
|
®(AR/A7)
O
¢
\

drological cycle, while no correlation is observed with solid Farth tides, although they

induce stress variations of comparable amplitude. Such a decrease of sensitivity to peri-

- — ' or only the shear stress, and replacing (2-b) by the actual
odic loads with decreasing period has also been observed in lab experiments. In the e value of A. The linear approximation is also indicated
SRR S on the plot. The lower panel shows the phase difference

T i
Stress period (years)

o
[

O (AR/A7)

case of non-volcanic tremorts, we show through analytical approximations and numeri- B S S R S PP : S Rt Attt S St S 0.5 [T T T T T T T
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strengthening fault areas that are near velocity neutral at steady-state, i.e. Ou/0lnV=0, P e p o 0 o " 10 o W
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arce hlghly sensitive to peﬁodlc loadlng within a certain range of perlods, which depends N Amplitude and phase of the vari- wo . Natwralperiodicitiesonthefaukt
on the frictional properties. These aseismic periodic transients can in turn induce a peti- For velocity neutral faults (a-b = 0), amplification possible of the perturba- ations of seismiclty rate from W evene S S S
. . o o . . . . . . o finite faults simulations and Di- £ ] i [
odic modulation of the tremor activity. To assess the conditions needed to explain the tion for the right range of periods. Possible explanation for the sensitivity eterich (1994) model.
Himalayan seismicity observations, we consider velocity weakening faults. We find that of non-volcanic tremors to tides and passing seismic waves without resort- o - oteitlid 1)
. . . . . o . Spectrum indicating the natural TRV ¥ v 1
the behavior of a simple 1D spring-slider system cannot explain the lower sensitivity to ing to extremely low normal stresses. petiodicities in the timing of

events on the unperturbed fault.
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semi-diurnal than to annual load variations. We suggest that, in that case, the finite di-

7 e
mension of faults Pl’&YS a kCY role. To support this 1dea, we simulate the responsc of a 2 Rate _We ake nin g f aults ° S ensitivity Amplitude and phase of the variations of seismicity rate from finite faults simulations and Dieterich (1994) model for large and small events separatly.
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finite size fault Ob@Yiﬁg rate-and-state fﬁCtiOﬂ, using the Boundary Iﬂt@gl‘ﬂ.l CYCLe of Details for 3 perturbed cases, indicated on the plot above. Upper plot: history of slip on the fault. In the cases a and b, the perturbation causes the fault
to have a steady behavior made of large M = 1.05 events, followed by 2 to 4 small events. Lower plot: Distribution of magnitudes for each case. In the
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rar thquakes (BICYCL—‘> code. These simulations y1€1d ap eriod d€p endent t esponse to O f e ar th qu ake S cases a and b, the distribution 1s altered by the perturbation. Inset: seismicity rate stacked over a period and fit giving the amplitude and phase.
periodic stress variations alike that observed in Nepal and 1n lab experiments. . . . . . . . . . . " . . . .
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Dieterich (1994) model
1 Rate—Stfen g thenin g fau1t8: SenSitiVity Spring-slider system under rate-weakening rheology. Only the timings of

seismic events are modified.
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Response of a spring-slider with rate-strengthening friction to a harmonic
Coulomb stress perturbation:
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events, it actually impacts on the popula-

tion of events that the fault produces. It

tudes AS, = 0.9 kPa and AS, = 15 kPa. The system is un- AT; S1INnt can both stabilize the fault (above case) ot e
dergoing constant loading at velocity V_ = 0.02 m/yr under o

create complexity (case to the right). o
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mean normal stress 0 = 5MPa. The normalized spring stiff-
ness is £/0 = 0.002 m™. The other parameters are: u_= 0.7,

a = 0.004, » = 0.0036 and D_= 0.2 mm. Upper panel: Am-
plitude of the creep rate variations. The black lines with cir-
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Slip on the unperturbed fault: Magnitude distribution:
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Behavior of a fault with a smaller rate-weakening patch, unper-
turbed, and under a harmonic perturbation of period T = 0.02 yrs.
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cles represents the results of the simulations (one circle tor 60
each period tested). The dashed grey lines with triangles
represent the small perturbation approximation for each

Distribution
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) /2_'_(,_' Simulation1 | simulation while the dashed black lines indicate the corre-
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sponding asymptotic behavior of the system with equations
indicated on the plot. The critical periods T, TQ and T are
also indicated on the plot. Lower panel: Phase difference
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, - o . For a rate-strengthening rheology, a simple spring slider system shows that under velocity neutral con-

Magnitude distribution of events happening on an ditions, a harmonic perturbation falling within the right range ot periods can be amplified and result
unperturbed fault. The fault naturally has some

complexity, but most of the events are M = 0.94.
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between the creep rate and the Coulomb stress variations.
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(a — b)a- . 001 yes b s | | | ed on each event. a4 muc 1gner sensitvity or the Se1smicCity to stress perturbations than a simple spring-sliaer system

1o = D 1y 1 ) 0 ° 08 ’ e would. This comes from the etfect that a stress perturbation can have on the nucleation zone.
C

45

in large creep rate variations on the fault. This could explain the observed correlation of non-volcanic
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tremors with tides or passing seismic waves. For a rate-weakening patch, a finite fault model predicts




