Shear wave velocities in minerals at high-pressures and temperatures determined with synchrotron-based experimental methods

Jennifer M. Jackson
Seismological Laboratory
Division of Geological and Planetary Sciences

Tectonics Observatory Annual Meeting
November 12, 2012
Geophysical observations and modeling require an understanding of material behavior and properties.

Variations in V_S

Sun, Helmberger, Jackson, Clayton, Bower. (2012, in press)

Helmberger, Lay, Ni, Gurnis. *PNAS* 2005

Sun, Helmberger, Gurnis. *GRL* 2010
Generating high pressures, temperatures, and atmospheric variations:

Panoramic diamond-anvil cell (DAC)

Hydrothermal DAC (scale as above)
The Advanced Photon Source
Wave velocity determinations using inelastic x-ray scattering

Chicago area, IL
Measuring vibrational properties (e.g., wave velocities) with inelastic x-ray spectroscopy

Inelastic scattering (acoustic phonons)

Elastic scattering

Zero energy exchange (Mössbauer)
Combining velocity **determinations** with **seismic observations** and geodynamics:

Rolling hills resting on Earth’s core-mantle boundary
Velocity measurements of \(\text{(Mg,Fe)}_2\text{Si}_2\text{O}_6 \) enstatite: Low shear velocity zone due to structural transition

Enstatite (pyroxene): Component of Earth’s upper mantle and depleted lithosphere of subducting slabs

Phase transition indicates shear velocity softening at high-pressure.
Flat slab subduction of the Cocos plate under Mexico

Comparing observations with mineral physics

Deeper regions of the Cocos plate under Mexico

Recent progress in pressure cells, advanced radiation sources, and inelastic x-ray scattering methods enable wave velocity measurements of minerals subjected to their plausible environment(s) inside Earth.

By combining an interdisciplinary framework with a multi-scale understanding of the chemical and physical processes that occur inside the Earth, and improvements in data resolution and modeling capabilities, it is possible to better understand the evolution of the earth system.