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size piezometer, a quick and inexpensive method for resolving stress

histories in exhumed rocks. Consideration of the various stress
estimates indicates an integrated crustal strength of 1.5-2.1%1012 N/m,
consistent with a weak strength-depth profile and friction coetticient

Figure 5. Vein swarm from the core of a small anticline (sample oo4).
Multiple generations of veins crosscut one another. Many veins are dy-
namically recrystallized (see figure 6). Recrystallized grain size reflects
stress conditions at the brittle-ductile transition. Titanium-in-quartz ther-
mometry indicates vein emplacement at 260-300°C.

within the Taiwan wedge of ~0.33.
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plot of In(0) vs. 1/T have a slope of Q/nR. Assuming a stress exponent of
n=4, the slope corresponds to a minimum activation energy of 133 kJ/mol
(experimental values are 134-2779). This observation validates the extrapo-
lation of experimental quartz results from high-temperature laboratory
experiments to geologic conditions because it suggests that the same de-
formation processes are responsible for deformation in both the lab and
nature. If a different process began to dominate at low temperatures, it
should have a lower activation energy than the experimental value.

Figure 1. A: Map of Taiwan showing the Hsuéhshan range (HR), Luzon volcanic arc (LV),
study area and plate convergence vector (e.g. Gueydan, 2003). B: Map of the study area show-
ing sample localities and major structures. C: Cross section showing major structures, folia-
tion measurements, strain ellipses in slate (Tillman and Byrne, 1995), and our foliation mea-
surements in quartzite. D: Grain size data and corresponding stress estimates plotted relative
to position on cross section. Data points associated with good temperature constraints are en-
larged. E: Summary of temperature constraints. Raman spectroscopy of carbonaceous mate-
rial ("RSCM,” Beyssac et al.) serves as a peak temperature constraint; titanium-in-quartz tem-
perature estimates are deformation temperatures. The grey-shaded field summarizes
deformation-temperature constraints for late deformation.
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