Assessing stress levels on faults using clumped isotope thermometry of gouges and vein arrays

Erika Swanson, Brian Wernicke, and John Eiler

This study was partially supported by the Gordon and Betty Moore Foundation

Stress on low-angle normal faults

\[\sigma_1 \]

\[\sigma_3 \]

At failure, shear stress \(\tau = \mu \sigma_n \)

Where \(\mu \) is the coefficient of friction and \(\sigma_n \) is the normal stress

Shear heating

Shear stress is related to heat produced along a fault by:

\[q = \tau \cdot v \]

where \(q \) is heat flux, \(\tau \) is shear stress, and \(v \) is long-term velocity along a fault

Clumped Isotope Thermometry

Reaction:

\[\text{Ca}^{13}C^{18}O_2 + \text{Ca}^{12}C^{18}O_2 \rightarrow \text{Ca}^{13}C^{18}O^{16}O_2 + \text{Ca}^{12}C^{16}O_3 \]

The forward reaction causes "clumping" of the heavy isotopes. This is more favorable at low temperatures.

The sample is dissolved in acid to release CO_2 gas, which is measured for masses 44-46.

Mass 47 (the clumped molecules) is related to temperature by:

\[T = \frac{45870}{A_{47}} + 0.129 \]

Where \(\Delta A_{47} \) is the difference between the measured mass 47 and that expected from random distribution

Temperature vs \(\delta^{18}O \)

This study was partially supported by the Gordon and Betty Moore Foundation.