Simple Elastic Dislocation Models for Interseismic Deformation in Subduction Zones
Ravi V. S. Kanda and Mark Simons

I. Motivation
To understand the physical rationale behind the success of the backslip model for interpreting subduction zone geodetic data (Savage, 1983) by studying a kinematically more consistent model for subduction. Specifically, we want to know under what conditions the backslip model is a good approximation for predicting surface deformation on the over-riding plate.

II. The Backslip Model (BSM) as a special case of the Elastic Subducting Plate Model (ESPM)

III. Synthetics: Comparison of BSM & ESPM predictions

IV. Inversion Software Developed (PYTHON package)

V. Sumatra Results

VI. Conclusions & Future work

ESPM experiences deformation in the subducting plate due to bending at the trench:

Due to a change in momentum associated with bending, the ESPM experiences compression in the over-riding plate, adjacent to the trench (above), as well as a deceleration in the subducting plate (below). Surface displacement on the footwall is zero, while the over-riding plate, not the expected plate convergence velocity.

BSM notes: artificial extensional slip along incline interface.

Net shear strain = 2 Tan(θ/2)

Surface displacement on the footwall is ~ zero w.r.t. the overriding plate, not the expected plate convergence velocity.

III. Synthetics: Comparison of BSM & ESPM predictions

IV. Inversion Software Developed (PYTHON package)

V. Sumatra Results

VI. Conclusions & Future work
