
Is rapid exhumation of the High Himalaya driven by ramp overthrusting, the formation of mid-crustal duplex, or out-of-sequence thrusting associated with channel flow?
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A number of studies of river incision and exhumation across the Nepal Himalaya
indicate that uplift rates must increase abruptly from the Lesser Himalaya to the High
Himalaya.  A zone with enhanced uplift rates is also needed to explain the high relief
and the straightness of the front of the High Himalaya (Figure 1). Locally high uplift
rates could relate to: 1- thrusting over a mid-crustal ramp (Lave and Avouac, 2001); 2- 
mid-crustal duplex growth (Bollinger et al, 2004, 2006); or 3- out-of-sequence thrusting 
along the front of the High Himalaya. (Harrisson et al, 1998; Hodges et al, 2004) 

Rampoverthrusting can be a viable mechanism only over a short period of time since,
considered alone, this mechanism fails to account for the growth of the orogenic
wedge. The same problem arises with out-of-sequence thrusting, if considered alone.
Thus an additional mechanism is needed to account for the transfer of material from
the underthrusting Indian crust to the Himalayan wedge. The structure of the
Himalayan wedge as well as the pattern of active deformation across the range
suggests that underplating, through the development of a duplex system at mid-crustal
depth, has been the dominant mechanism of accretion over the last ~15Myr. In an
attempt at determining plausible kinematic models of the Himalaya of central Nepal
over this period, we have applied a formal inverse approach based on the
Neighbourhood Algorithm. The forward models consider the possibility of either
thrusting localized along a single major thrust fault (the MHT) with non-uniform
underplating due to duplexing, or out-of sequence thrusting in addition to thrusting
along the MHT and with uniform underplating rate. The models are computed using the
thermokinematic FEM model PECUBE (Braun 2003, Herman et al 2007), and tested 
against thermochronological, thermometric and thermobarometric data (Figure 2, 
compiled from the literature (Beyssac et al, 2004; Bollinger et al, 2004;  Blythe 2007;   
Burbank 2003;  Kohn et al 2004;  Catlos et al 2001; Harrison et al 1998) 
and complemented with some new (U-Th)/He data.
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Figure 1: Kinematic models tested in Pecube. (A) Both models are identical during the first stage (STAGE 1). 
(B1) Second stage of the Duplex Model.  (B2) Second stage of Out-of-sequence thrusting model

A formal inversion approach based on the Neighbourhood Algorithm 
(Sambridge 1999) allows definition of best fitting values of model 
parameters from a parameter search (Figure 3-4) and their estimated 
uncertainties from the computed Probability Density functions 
(Figure 5-6, Table 1).  In addition to the geometric parameters, 
model variables include overthrusting rates; 
radiogenic heat production in the High Himalayan Crystalline (HHC) 
sequence; the timing of enhanced rock uplift/exhumation rates corresponding 
to the formation of the duplex or out-of-sequence thrustre-activation.  
The inverted paremeters a summarized in Table 1. The duplex model, with a 
minimum reduced X2 of 0.67, is more consistent with observation. According to 
this model the 20 mm/yr convergence rate is partitionned between 
an overthrusting rate of 5 +-1 mm/yr and an underthrusting rate of 
15 +- 1 mm/yr. Modern uplift rates are estimated to increase from 
about 0.8+-0.2 mm/yr in the Lesser Himalaya to 3.5 +- 0.5 mm/yr at the 
front of the high range, 95 +- 5 km from the MFT.  The effective friction 
coefficient is estimated to be 0.09 +- 0.01 and the radiogenic heat 
production of HHC units is estimated 2.2 +- 0.1 µW/m3. The mid-crustal 
duplex initiated at 10 +-2 Ma, leading to an increase
of uplift rate at front of the High Himalaya from ~0.8 to 3.5 mm/yr. A model 
with out-of-sequence  thrusting can provide a satisfactory fit to the 
data (with a minimum reduced X2 of 0.78) but  requires a large overthrusting 
rate of 11 +- 1mm/yr and implies a total convergence rate >30 mm/yr.  
Thus the analyzed dataset appears more consistent with 
a duplex model than to out-of-sequence thrusting.

In Figure 7, we present an example of a forward duplex model that leads to a 
good fit to the data. The parameters correspond to the best fitting parameters
summarized in Table 1.
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Figure 5: NA appraisal stage for the duplex Model: !D computed marginal PDF.
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Table 1: Parameters set free for inversion with NA. DM stands Duplex  Model amd OOS for out of sequence reactivation 
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Figure 3: NA sampling stage for the Duplex Model.  Definition of each parameter is shown in Table 1.
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Figure 4: NA sampling stage for the Out-of-sequence thrusting model. Definition of each parameter is shown in Table 1.
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(1) Simulated and observed thermochronological data in Central Nepal for best fit model

(2) Close up at the front of the high range
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Figure 7: Example of  a good fitting model for the Duplex scenario. (A) Observed and predicted 
thermochronollogical data. (B) Observed and predicted peak metamorphic temperature
Modified from Bollinger et al 2006. (C) Observed and predicted peak metamorphic pressure. 
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Figure 6: NA appraisal stage for the OOS Model: 1D computed marginal PDF.
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Figure 2: Geological map of Central Nepal Himalaya and location of thermochonometric  and thermobarometric  data used in this study.
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