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The Nevada GPS project was funded as a strategic augmentation of planned Earthscope continuous GPS sites in .
the Basin and Range, with the objective of producing dense enough coverage to observe and model apparent Staff: Jeff Genrich
migratory strain in north-central and eastern Nevada. As extensively discussed in TO western US working group

meetings, and published this summer (Davis JL, Wernicke BP, Bisnath S, et al., 2006, Nature - see below), this

region of the Basin and Range forms a boundary zone between accelerating sites in the western Basin and

The current project plan, as both TO and PBO sites come on-ling, is to begin archiving and annual processing of data from the group of sites shown in the map
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Range and non-accelerating sites to the east. These large-aperture observations over the last decade are the below and listed in the table below, which consists of approximately 35 sites. In conjunction with this work, we hope to begin an investigation of the only major
. . . . . normal fault along the transects for which no paleoseismological slip estimate is available, the Ruby Valley fault zone. This fault bounds the east side of the Ruby
first to SuggeSt relatIVEIy efficient anelastic energy transfer across a deformmg plate boundary zone at human Mountains, Nevada, just west of site Ruby (Figure 1). In addition, over the next year we will begin dislocation modeling efforts to test the hypothesis that velocity
timescale, which in turn could be a major control on the seismic cycle and rheology of the |ith05phere. Full char- changes are the result of rapid transient slip (of order cm/yr) on the down-dip extensions of the large active normal faults along the transect (see below).
acterization of strain waves down to ~100 km wavelength will be possible with the ~30 km site spacing of the Subcontinental-scale Transient Deformation along Pacific-N. America Boundary
densified network. . . . . .
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— Transient tectonic deformation has long been noted within ~100 km or so of major plate boundary faults zones and within active volcanic regions, but 42°0'0"N 4 ¥ s _ . 42°0'0"N
, do transient motions also occur at larger scales within plates? We report the first geodetic evidence for a coherent, subcontinental-scale change in tec- TN e e st BN G 2 i B & ﬁ‘
=5 | tonic velocity along a diffuse, ~1000-km wide deformation zonebased on continuous GPS observations over the last decade across the Basin and Range ol s 30 . i o " Bt | o S, O
' province Basin and Range deformation absorbs approximately 25% of Pacific-North America right-lateral transform motion, expressed by east-west ex-
tension in Utah and north-northwest right-lateral shear in western Nevada and eastern California. Changes in site velocity define a sharp boundary near
the centre of the province oriented roughly parallel to the north-northwest relative plate motion vector. From 1999.5 to 2001.0, sites to the west of this
boundary slowed relative to sites east of it by ~1 mm/yr.
Relatively localized transients are known to occur as both seismic and episodic aseismic events1,and are generally ascribed to motions of magma bodies, 417300°N +17300°N
aseismic creep on faults, or elastic or viscoelastic effects associated with earthquakes. However triggering phenomena and systematic patterns of seismic
strain release at subcontinental (~1000 km) scale along diffuse plate boundaries, have long suggested that energy transfer occurs at larger scale. Such
transfer appears to occur by the interaction of stresses induced by surface wave propagation and magmas or groundwater in the crust , but do mecha-
nisms not directly associated with earthquakes also exist?
We have addressed this issue by constructing the Basin and Range Geodetic Network (BARGEN), the first 1000 km-aperture continuous GPS network to
be deployed across an actively deforming plate boundary zone. Eighteen sites, comprising an east-west transect between latitudes 39°N and 41°N (map 41°0'0"N 11°0'0"N
> above), began recording in 1996-7; time series are now long enough for us to obtain statistically reliable estimates of any changes in velocity that might
S occur on a regional scale. Dual-frequency GPS phase data were first analyzed in the usual way using GAMIT/GLOBK, resulting in estimated average veloci-
< ties and time series in a North American reference frame. The average horizontal velocities of the sites rise from near zero in the east to ~3 mm/yr due
west across western Utah, remain relatively constant across eastern Nevada, and then rotate northwestward and progressively increase up to ~12 mm/yr
in the Sierra Nevada.
40°30'0"N 40°30'0"N
lllustration of the post-analysis procedure, using time
series of east position for four BARGEN sites. Top: “Raw”
20 . .. . . .
time series, in a North-America-fixed geodetic reference
E frame. Error bars are omitted for clarity, but are gener- r— i0c00iN
E ally ~1 mm. The straight line is the best-fit straight line
§ s using points from the first 2.5 years. Middle: Residuals
Zz o of the raw time series from a best-fit model consisting of
o < a straight line and seasonal (annual and semi-annual
g —20 sinusoids) terms. A spatial filter5 with mean, rate, and
S acceleration constrained to zero has been applied.
'ng Bottom: Residuals smoothed with a Gaussian filter of 39°30'0"N 39°30'0"N
b N width 0.04 yr (~15 days), and sampled every 0.04 yr. A
- I . : model based on a linear fit to the first 2.5 yr of data has
u I e e 1 been removed. The evolution of these final time series
—60 [t et manasa e enene IR thus indicates deviation from temporally linear
I [ | [ | [ | [ | [ J | [ 1 [ | [ | [ | [ J | [ | [ | [ | [ | [ J | [ | [ | [ | [ | [ | mOtion.
1996 2000 2004 1996 2000 2004 1996 2000 2004 1996 2000 2004
39°0'0"N 39°0'0"N
z Distance Along N68°E (degrees)
© Analysis of spatial variation of nonlinear de- 0 2 4 6 8 R G b A e . - ¢ 22
viations. a, Smoothed time series of 1996 a I - | ' 5T b ' - ' — AVl e ol - . L s ) 4 : .- : _. _ L
smoothed position deviations from linear I 10 mm I i i 117°30'0"W 117°0'0"W 116°30'0"W 116°0'0"W 115°30'0"W 115°0'0"W 114°30'0"W 114°0'0"W 113°30'0"W
motion in the direction N68°E, projected 1998 I- | 1F [ ]
along a great circle with azimuth N68°E near - 1 E oL _
the centre of the network. Where these de- 2000 [- | 18 | : Siting for three new continuous TO sites (CLOV, MOIL and LACR) was completed in early fall 2005, densifying the existing BARGEN transect that includes sites ELKO, RUBY and GOSH (see above). Permits were
viations are positive, the space between the - 1% | i secured by the summer of 2006, and monumentation has been completed. Electronics installation and bringing the sites on-line will begin in early November 2006. Close coordination between TO and the
trace and zero has been shaded black. The 2002 |- 48 t . PBO siting committee enabled all of the earlier proposed densification of the Mount Lewis area to be absorbed by PBO, such that the transect including TO sites BAMO and TOIY will be densified to ~30 km
significant deviations occur in the western - - ‘g’ ST . station spacing. The close station spacing will permit robust testing of elastic dislocation models for individual faults, including the western range front faults for the Ruby Mountains, Cortez Range and Sho-
part of the network. b, East components of 2004 |- - w - shone Range, as well as comparison of geodetic rates with previous estimates of late Cenozoic strain release rates from paleoseismological methods. Robust velocity estimates (+ 0.2 mm/yr intersite velocity)
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