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Located in Southeast Asia, the Sunda subduction zone
lies at the interface between the Sunda block
and the Australian plate.

Over the last 200 years, there have been at least five
giant earthquakes, including the December 26, 2004
earthquake which caused a tsunami that killed
approximately 100,000 people. As such, a detailed
understanding how the two plates are slipping past
each other can help us understand where and when
the next giant earthquake near the Sunda subduction
zone is likely to occur. 

(Left)
The two primary methods used to measure surface
displacement at this particular site  are GPS, which directly
measures displacement in every direction, and coral growth
records, which is a proxy for vertical displacement. While GPS
both is more precise and provides data  in three directions
rather than just one, we can only find data for time periods
during which a GPS station was functioning and in place. 
Coral dies when it is exposed to air. Thus any changes in the
lowest low tide of the year,  for example due to tectonic uplift,
may be reflected in how the coral grows from year-to-year. 
Because coral occurs naturally, coral growth records can
provide over a hundred years of displacement data [5].

(Right)
After taking into account factors such as changes in sea level
over time and idiosyncrasies related to working with a
biological proxy,  the position of the yearly growth rings
formed by coral can be counted to determine the sea level
relative to some part of the coral that can be dated using
radioactive isotopes.  What results are time series that provide
a reasonably detailed record of vertical deformation over the
last 40 to 150 years.
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C oral uplift data
E stimated 1 σ error bar
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C oral uplift data
E stimated 1 σ error bar

 Photos courtesy of the Tectonics Observatory.

The earthquake cycle for two plates on the seductions on consists
primarily of three phases:

1. Inter-seismic Loading
	 - As the subducting plate and the overriding plate converge, 
	   a section of the interface between the two plates locks
	   and stress builds over time.

2. Co-seismic Events
	 - The stress eventually becomes too much for the plates to bear
	    a sudden and violent slipping between the two plates (i.e. an
	    earthquake) occurs, releasing the stress that has built up.

3. Post-seismic Relaxation
	 - After the earthquake the plates gradually return to a
	   temporary state of equilibrium, often accompanied by
	   gradually decreasing time-dependent slip.

A cartoon representation of this process and the resulting
surface deformation are located in the figure on the right. 
This information implies that if we are able to figure out what the 
displacement at the surface has been we may be able to solve for
what is happening at depth.
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Linear Model

C oral uplift data with  1 σ error bar
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Linear Model
C oral uplift data with  1 σ error bar
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Original data interpolated/extrapolated
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The most straightforward model is one that is linear with

time.  That is, the rate of displacement (vertical displacement

in this case) at the surface is constant.  This allows us to

explain most of the first-order features of the data (no pun

intended.) However, it is clear that there is some unexplained

variability in the data.

The first step in investigating this variability is to fit the data

using an assumed physical model, in this case the spring

slider model from [8].

The physical model allows us to interpolate and extrapolated data

so each of our datasets has the same distribution of

"measurements" in time. In the case of the coral data, we make this

an even distribution with one data point per year.

We then decompose all of our time series using a statistical

technique called principal component analysis (PCA).  The so-called

principal component vectors are chosen and ordered such that the 

first principal component vector explains as much variability of the 

data as possible, the second principal component vector explains as

much variability of the data as possible given that the variability 

associated with the first component has been removed, and so on.  

	 	 	 	 	 	 This allows us to find the common patterns

	 	 	 	 	 	 amongst the data (in other words, components not

	 	 	 	 	 	 consisting of uncorrelated  noise or signal,)  and

	 	 	 	 	 	 thus faithfully represent each time series as the

	 	 	 	 	 	 sum of the first several pence will components.  In

	 	 	 	 	 	 this particular case, there are 14 principal

	 	 	 	 	 	 component vectors total and the even the most

	 	 	 	 	 	 troublesome stations (e.g. Antinang) are

	 	 	 	 	 	 well-represented with the first six principal

	 	 	 	 	 	 components. Some stations (e.g. Barogang) are

	 	 	 	 	 	 well-represented with only one component.  
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Each of the principal components has a weight

corresponding to each station. These weights

represent how strongly each principal component is

represented in the time series of that particular

station.  The vertical displacement resulting from the

contribution of each component is proportional to

each component's weight for that station. Using this

information or a given component we are able to

invert the set of weights for each station using the

Okada formulation and solve for a slip map that 

xplains the surface deformation we observe that

the surface due to this component. In part the

quality of the smoothing parameter used.  If the

smoothing parameter is set too low, the slip

distribution will not be able to vary much with

position.  However if the smoothing parameter is set

too high, the solution becomes very non-unique.
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An example of the how well

the slip model agrees

with the field data.  

The figures above are examples of cumulative slip distributions over five-year periods, from

1950-1955, 1956-1960, 1961-1965, and 1966-1970. Notice how the direction and magnitude of

slip over these time periods varies greatly. From examining all of the time series, it is clear that

something out of the ordinary happened near 1960. Figures such as these will help unravel the

mystery. Units are relative.
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Time Dependent Slip: 
A Mathematical Study of Historic Displacement Near the Sunda Megathrust Subduction Zone
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ABSTRACT
We invert displacement data using principal component analysis (PCA) and the Okada formulation for slip at depth on the fault in the Sumatra subduction zone. Though this work only deals with one 
dimensional displacement data, the method can be generalized to three dimensional displacements using GPS data. (Work in progress)


