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ABSTRACT

We invert displacement data using principal component analysis (PCA) and the Okada formulation for slip at depth on the fault in the Sumatra subduction zone. Though this work only deals with one
dimensional displacement data, the method can be generalized to three dimensional displacements using GPS data. (Work in progress)
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The most straightforward model is one that is linear with
time. That is, the rate of displacement (vertical displacement
in this case) at the surface is constant. This allows us to
explain most of the first-order features of the data (no pun
intended.) However, it is clear that there is some unexplained
variability in the data.

The first step in investigating this variability is to fit the data
using an assumed physical model, in this case the spring
slider model from [8].
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The physical model allows us to interpolate and extrapolated data
so each of our datasets has the same distribution of
"measurements” in time. In the case of the coral data, we make this

an even distribution with one data point per year.

first principa
data as possil
much variabil

0 0 0 O

Tofa number of components=6,y=1.5

10r

_‘I 0 -
— 1 Principal Component

Displacementin cm

—— 2 Principal Components
15F — 3 Principal Components
— 4 Principal Components

5 Principal Components
=6 Principal Components

-20F
O Interpolated Data
*  Original Data
-25 1 1 1 1 1 )
1940 1950 1960 1970 1980 1990 2000

Year

Displacementin cm

Antinang number of components=6, y=1.5
16

1 Principal Component
2 Principal Components
3 Principal Components
4 Principal Components
5 Principal Components
6 Principal Components
O  Interpolated Data

*  Original Data

14+
° /
12 O T/

10 -

7 ) 7 L
’/ Y

- > \
D>
oY
A
D 1
>
Y
|
1
1
A
oy
\ 1 1
AA 1
&
R
\ 1 R/
1
1
1
1
1
—

<Dy
DR
RIS PRRD) _
N 1‘9': —
W —_—
5
RPLg)
SR A
= < D 3%
RS
Y

AN
»;
»
—
»

74
R
2

TS
P
<

\
——————
JZ
"0y
DN
Lo T
>
D

1970 1980 1990 2000

Year

-4 1 1
1940 1950 1960

Displacementin cm
—_ —_ N N w w B
o (@] o (O] o (O] o
T T T T T T 1

(O}
T

Bendera number of components=6, y=1.5

— 1 Principal Component

— 2 Principal Components

— 3 Principal Components

— 4 Principal Components

5 Principal Components

= 6 Principal Components
O Interpolated Data

*  Original Data

-5
1940

1950 1960

1980

1990

2000

[

O O O O O O O g0 g .3

s a0 &30 &3 &3 &3 &3 &3 &3 £33 =3

We then decompose all of our time series using a statistical
technique called principal component analysis (PCA). The so-called
principal component vectors are chosen and ordered such that the

| component vector explains as much variability of the
ble, the second principal component vector explains as
ity of the data as possible given that the variability
associated with the first component has been removed, and so on.

This allows us to find the common patterns
amongst the data (in other words, components not
consisting of uncorrelated noise or signal,) and
thus faithfully represent each time series as the
sum of the first several pence will components. In
this particular case, there are 14 principal
component vectors total and the even the most
troublesome stations (e.g. Antinang) are
well-represented with the first six principal
components. Some stations (e.g. Barogang) are
well-represented with only one component.

Each of the principal components has a weight
corresponding to each station. These weights
represent how strongly each principal component is
represented in the time series of that particular
station. The vertical displacement resulting from the
contribution of each component is proportional to
each component's weight for that station. Using this
information or a given component we are able to
invert the set of weights for each station using the
Okada formulation and solve for a slip map that
xplains the surface deformation we observe that

the surface due to this component. In part the
quality of the smoothing parameter used. If the
smoothing parameter is set too low, the slip
distribution will not be able to vary much with
position. However if the smoothing parameter is set
too high, the solution becomes very non-unique.

ISpecial thanks to-the SURF program, the Tectonicsy Observatory, and the
George W. Houwsner Student Discovery Fund for supporting this project.
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The figures above are examples of cumulative slip distributions over five-year periods, from
1950-1955, 1956-1960, 1961-1965, and 1966-1970. Notice how the direction and magnitude of
slip over these time periods varies greatly. From examining all of the time series, it is clear that
something out of the ordinary happened near 1960. Figures such as these will help unravel the
mystery. Units are relative.
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An example of the how well
the slip model agrees
with the field data.
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