Thermal modelling of metamorphism and exhumation in Western Nepal and India
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The geological association of the Himalayan range is a juxtaposition of inverted metamorphic sequences in the footwall of the Main Central Trust (MCT)
with a belt of Miocene leucogranites emplaced above the fault (Figure 1). The MCT extends across the 2500 km length of the Himalayan orogen and is the dominant
structural feature of that mountain belt.

The inverted metamorphic sequences beneath the MCT ramp has been interpreted as a reactivation of the thrust following ~10 m.y. of inactivity [e.g. Harrison et al 1997].
Measured monazite ages from the lower Lesser have been used to interpret reactivation of the MCT at ca.8 Ma and activation of the MCT Zone at ~6 Ma. More recently,
Bollinger et al 2004 and 2006 showed that shortening across the Himalaya can be explained by accommodation by a single fault, the Main Himalayan Thrust (MHT),

and that the growth of Himalayan wedge has resulted from underplating and development of a duplex. In this latter scenario, the MCT zone corresponds to the MHT
exhumed at the surface.

In both instances, an increase of exhumation from about 8 Ma is required. We test here these models in Far West Nepal and India, where new thermochronological
data have been collected (Ar39/Ar40 in muscovite, Raman Spectrometry and (U-Th)/He in zircon). We use a thermal-kinematic model which solves the heat transfer
equation coupled with an inversion algorithm, the Neighbourhood Algorithm (Sambridge 1999).
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of accretion, the upper plate overthrust the lower plate at (1-ra)*v
with v being the total shortening rate.
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