Unroofing of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometry
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The southwestern portion, or Grand Canyon region, of the Colorado Plateau is characterized by a broad (~15,000 km2) gently NE-dipping structural terrace that is
interrupted by the N-trending Kaibab uplift. The plateau surface resides at an elevation of 1500 to 2000 m, is underlain by the resistant Permian Kaibab limestone, and
preserves discontinous exposures of fluvial sandstone of the Triassic Moenkopi Formation. To the northeast, progressively younger Mesozoic and Cenozoic formations
are exposed in a series of cuestas known as the “Great Rock Staircase” To the west, the plateau edge is structurally delineated by major normal faults of the Basin and Range Zone 5 - Detrital Apatite Data , _
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southwestern plateau and incises to depths as great as 1600m. denuded to current
The Mogollon rim, extending 500 km in a northwest trend across Arizona, is primarily an erosional feature that separates the Colorado Plateau from Precambrian (A) (B) Individual detrital AHe dates (symbols) as ﬁf,gfz,?gc%’,?zi“,,%’;}ﬁo“ﬂ“ ,t;’gggg;’-‘;j;eggfé
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Generic Burial and Unroofing Models RADIATION DAMAGE CONTROL ON (U-Th)/He APATITE DATES FROM THE SOUTHWESTERN COLORADO PLATEAU
Radiation-damage trapping model Radiation-damage trapping model Conventional Durango diffusion kinetics
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Thus, it may be possible to extract additional information regarding the details of the temperature- Pierce, H.W.,Damon, P.E., and Shafiqullah, 1979, An Oligocene (?) Colorado Plateau edge in Arizona: Tectonophysics, v.61, p. 1-24.
The radiation-damage trapping model incorporates He diffusion kinetics that evolve with temperature and [He]. We simulated distributions of dates expected for detrital grains of uniform diameter (100 um) time path from these relationships than would be possible in a sample characterized by a rotochnik AR, 1989, Depositional style and tectortic Inplications of the Mogollon Rim Formation (Eocene), East- Central
characterized by an arbitrary but reasonable range of [eU] (2-100 ppm) and (U-Th)/He provenance dates (AHe date of the apatite when deposited, AHedep) from 5 to 100 Ma. We first consider monotonic heating and uniform distribution of apatite dates. rizona:new iiexico Beological soclety Buidebook el Fonterence, sottheastern Lolorado Flateath b '
cooling (A), and display the results in (B) and (C). For comparison we show the results for a model that assumes conventional Durango apatite He diffusion kinetics (D). 2%5&2’5&&% F;%vge;fégé'\tﬂé} a%iiiirliyigiﬁé'riovogﬁghe imgtﬁgsl:e of natural radiation damage on helium diffusion kinetics in
A Tpk of 20 °Cis insufficient to cause He loss from any of the apatites, such that the final distribution of dates mimics the provenance distribution, and is independent of [eU]. For Tpk of 60 °C, apatites with the lowest CL images of apatites from Moenkopi sample PGC-015 that patite: y VLB '
[eU] (least radiation damaged and lowest Tec) undergo complete He loss and thus yield the youngest dates, while apatites with higher [eU] (more radiation damaged and higher Tec) are incompletely reset under the same displav variable briahtness and zonina characteristics \Tfoun9, R. ﬁ" 1979, %ﬁramzig_egeformationlerosion and plutonism along the southwestern margin of the Colorado Plateau:
conditions and so yield older dates. Increasing Tpk to 70 °C induces greater resetting of apatites with higher [eU]. A Tpk of 80 °C causes nearly complete He loss in all apatites, thereby generating a fairly uniform population pay g 9 ' ectonopnysics v-01, b '
of dates. Thus, burial and unroofing simulations characterized by no resetting show no correlation between date and [eU], and those affected by complete resetting yield dates that cluster fairly tightly. Only those simulations Young, R. A, and Spamer, E.E, 2001, The Laramide-Paleogene history of the western Grand Canyon region: Setting the stage,
that include an episode of partial He loss can generate broad distributions of AHe dates that correlate with [eU] and [He], due to divergence of He retentivities in the apatite suite prior to partial resetting. in Young, R.A.a.5. E.E.ed. Colorado River Origin and Evolution, Grand Canyon Association, p. 47-52.




