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Figure: Geodynamical setting of the arc-continent collision of Taiwan Thick arrow shows the con- R an ge
vergence of the Philippine Sea Plate relative to the Chinese Continental Margin predicted from the *
global plate geodetic model REVEL [Sella, et al., 2002]. Main structural units of Taiwan: CoR: Coas-
tal Range - LV: Longitudinal Valley - TC: Tananao Complex - BR: Backbone Range - HR: Hsueshan
Range - WEF: Western Foothills - FB: Foreland Basin. Peikang Basement High after [Lin, et al., 2003].
Black lines indicate the three transects investigated by Beyssac et al [subm.]. box shows where the
kinematics of shortening have been quantified (e.g. Simoes et al, 2006).
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Figure: Schematic view of a critical-wedge growing
by frontal accretion, from Willet et al (2001). In this
case shortening is distributed within the range.

Figure: Sketch summarizing the kinematics of Taiwan quantified in this study. An average erosion rate of 3 mm/yr balances underpla-
ting below the internal portions of the range. Only a small portion of the underthusted crust participates the range growth. The flux of
material lost by subduction into te mantle is significant. See also Simoes et al (2006). This holds for the last 1.5 to 2 Myr.
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To fit both gradient of peak metamorphic temperatures and LT ages over the TC (east Central Range)
need to widen the underplating window beneath TC 1.5 - 2 Myr ago.
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- . . . . underplating occurs beneath the HR and the TC. These constraints are provided by RSCM thermo-
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Figure : Predicted thermal structures for the three transects investigated . Temperatures . . = o
do not change significantly laterally, supporting our 2D approach. Isotherms are repre- lnternal dynamlcs Of
Figure (right) : Peak metamorphic temperatures retrieved from RSCM (Beyssac et al, subm) and predicted by our thermo-kinematic model for the three ransects across }c,/::]nteﬁ evgry 100°°C ccl)ntour. AISO dr e}fresen’;e;kls the sillsmlatydfrorr}llthe C‘;V]; (Cﬁntral th d
the range. Observed temperatures below 330 °C within the BR are not reported since this value represents the lower limit of applicability of the method (Beyssac et al, eather (‘)H‘iau) Ca}ta Oglgretr;eve al Ondg a m355w?t al‘logugri ez(é) . (C))nhe o tbe t rele . e we g e
2002). alternatively a probable maximum temperature of ~ 200 °C may be inferred for this area based on the non-resetting of (U-Th)/He ages on detrital zircons transectg nly earthquakes o magmtu €5 OVer 5.0, Irom to , Nave been p otted.
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Figure:Geometry of our thermo-kinematic model, with the different domains of homogeneous thermal and kinematic pro- geometry of the alwanese range. Ierestingly, tne seisimic gap Withih the 18 Comclaes
perties: lower plate mantle (LPM), lower plate lower crust (LPLC), lower plate upper crust (LPUC), orogenic prism (OP), Fi ) L1 : ¢ o . . . quite well. with the high topography, mOSﬂY fgr the nort.hern and central transects, as l
. o igure (left): (U-Th)/He ages on detrital zircon (Beyssac et al, subm.) with 2-c error bars, and predictions from our thermo-kinematic model by assuming a closure well as with the 350 to 400 °C isotherms. This is also valid over the easternmost boundary . , o\ . -
upper plate mantle (UI?M) gnd upper Plate crust (UPC). Thg basal decollemeqt is ta'ken as the reference for the Ve.IOCI’Fy field. temperature of 180 and 160 °C. Shaded area indicates where the ages are partially or non- reset over the BR. Where predicted ages are non-reset, no model predictions of the prism. Figure : Predicted den.s%hes (bottom) and topogra.p.hy (top) in the case of the northern.tran.sect.. Dens1t1§s are calculated after Bousquet et al (1997)
I is represented by a thick line, which is dashed where the different underplating windows are located. The velocity field are shown from the rock composition and from the PT conditions computed in our model. Fine lines indicate the isotherms of the computed thermal struc-
computed for the lat 2 Myr is shown. Only the thickness h of the undurthrusted margin is incorporated into the range, the '

ture. The topography is predicted from the distribution of densities by assuming local isostasy and compensation within the asthenosphere

rest is subducted beneath the Philippine Sea plate. (procedures described in Henry et al (1997). The observed topography (red dots) is taken within a 30 km wide swath across the northern transect.




