Presentation

It is rarely straightforward to interpret uplift rates recorded by geomorphic and structural
markers in terms of horizontal shortening, e.g. in the context of piedmont folds, where thrust
faults are often blind. Usually, this requires a spatially continuous record of the uplift, such as
well-preserved alluvial or fluvial surfaces, as well as assumptions on the underlying pattern of
deformation.

Here, using a simple formulation of the displacement field derived from sandbox experiments
(Bernard et al., submitted), we parameterize the spatial deformation pattern above the basal
detachment of a fault-tip fold. Assuming a stationary spatial pattern of deformation, we simulate
the gradual warping and uplift of stratigraphic and geomorphic markers, which provides an
estimate of the cumulative amounts of shortening they have recorded. This approach allows
modeling of isolated terraces or growth strata.

We apply this method to the study of two fault-tip folds in the Tien Shan, the Yakeng and
Anjihai anticlines, documenting their deformation history over the past 6-7Myr. We show that the
modern shortening rates can be estimated from the width of the fold topography provided that
the sedimentation rate is known, yielding respective rates of 2.15mm/yr and 1.12mm/yr across
Yakeng and Anjihai, consistent with the deformation recorded by fluvial and alluvial terraces. This
study demonstrates that the shortening rates across both folds accelerated significantly since the
onset of folding. It also illustrates the usefulness of a simple geometric folding model, and
highlights the importance of considering local interactions between tectonic deformation,
sedimentation and erosion.
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FAULT-TIP FOLD

Analyical formulation of fault-tip folding

Analog experiments support a simple analytical formulation of the
displacement field produced by incremental shortening across a fault-tip

o — fold (Bernard et al., submitted), and this formulation has been used to
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Sedimentation rates

Our geometric modeling does not directly provide timing information. It does, however, constrain cumulative
shortening as a function of stratigraphic depth, which can then be converted to ages using the recent
magnetostratigraphic studies of Charreau et al. [2005, 2006] and Charreau [2003]. These studies show evidence
for remarkably constant sedimentation rates over the past 10.5 Myr. Between the modern surface and the
stratigraphic level of the top of each
section, constrained by seismic °T. ——— 7
profiles [Deng fa et al., 2005], average [Charreau et al. 2006] :
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Modeling the shortening history of a fault-tip fold

using structural and geomorphic records of deformation
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Yakeng fold

At the surface, the Yakeng anticline manifests

as a gentle ridge resulting from the folding of a
large-scale, south-dipping alluvial terrace (Ta).
This structural surface is generally well preserved,
although south-flowing rivers dissect it in a number
of locations, forming steep, narrow gorges. One of
these rivers, (East Quilitag river) formed and

abandoned a partially preserved fluvial terrace
(Tf). Since then, ongoing deformation has folded
and uplifted Tf, bringing it about 25 m above the
modern river (Poisson, 2002).
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Seismic imaging (Hubert-Ferrari et al., 2005) reveals that
the width of the structural fold is more than twice that of the
emergent Ta, because the latter is buried under sediments
on the outer flanks of the anticline. At depth the amplitude of
folding generally decreases downwards, consistent with the
geometry of a fault-tip fold growing above a 6-km-deep
basal detachment coinciding with reflector L4, in the
evaporites of the Oligo-Miocene Jidikeh formation.
Gonzalez-Mieres and Suppe (2006), using measurements
of thickness relief area, estimated the mean finite shortening
to be 1.2km, and showed that folded reflectors L5 to L14 are

pretectonic.
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Discussion N o o N
The study of these case examples highlights some simple interactions between folding, sedimentation |
and erosion. Topographic relief can only accrue where and when tectonic uplift is faster than sedimentation A= U
(see also discussion in Simoes et al. [2006]). Thus, in the early phases of the histories of both folds, -
syntectonic sedimentary units extend continuously across the fold, and no topographic relief builds up (A). . ~ (B) EEE
As shortening rate increases, maximum uplift rates overcome the sedimentation rate, in a zone whose ' folding | sedimentation < upli,
width is a function of the spatial distribution of uplift. As long as the hydrographic system " EEICEey
: ost-emergence
: Folded —
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sediments

uplifted, relief remains negligible, and an abrasion surface is emplaced, unconformably
overlying older units (B), as observed on the northern flank of Anjihai. If the river is forced
to entrench in a narrow gorge because it does not have enough stream power to abrade
laterally all the uplifted rocks, relief starts building up above the core of the anticline (C),
producing something similar to the current situation of Yakeng. Eventually, the fold ridge is
expected to undergo secondary erosion driven by its own relief, as observed in the
exposed core of Anjihai.

sedimentation < uplift,
emergence of relief
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Anjihai fold |
The surface fold is about 7 km wide, and exposes conglomerates of the Xiyu
(highly diachroneous, Neogene to Quaternary) and Dushanzi (Neogene)
formations, unconformably overlain by Quaternary conglomerates and loess. On
the flanks of the anticline, such Quaternary structural surfaces are well-
preserved, forming triangular cuestas with slopes of 7-10%. We interpret these
surfaces (noted Tn and Ts) as folded strath terraces which passively record
deformation since their abandonment. Along the steep walls of the river-gap, the

shallow structure of the fold is beautifully exposed, with dip angles up to 25°.
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The seismic profile reveals a smooth, rather symmetric sub-
surface structure strongly suggestive of detachment-driven folding,
although the lower part of the section might be suggestive of small-
scale ramping near the fold’s core. Our line-drawing interpretation of
the seismic data allows mapping 7 distinct markers across the fold
(L1 to L7). For all seven markers, the structural relief areas are well-
correlated with depth, consistent with ~1.5 km of finite shortening
over a basal detachment located ~5 km below the surface. We
conclude that the sediments below L7 are pretectonic strata.
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== Imposing a finite shortening of 1.55km and a basal detachment

os | =N | ————| depth of 4.5 km b.s.I., we can model the observed finite geometry of
L BN — the pretectonic markers using a 13-hinge deformation model. The
ol NN el agreement between the predicted and observed dip angles is

— g evidenced when all present-day seismic reflectors are"un-shortened”
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by 1.55km. Below L7, the retro-deformed reflectors are uniformly flat,
whereas above L7 they adopt a syncline-like geometry, implying that
these reflectors therefore correspond to growth strata.
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Topographic relief width is thus a function of the spatial distribution of uplift

and the sedimentation rates. Shortly after the initiation of relief, the fold width 1
should equate to the width of the area where the uplift rate is greater than the
sedimentation rate. Using our parameterized deformation models for the
Yakeng and Anjihai folds, we can plot the predicted emergence width as a
function of the ratio between the shortening and sedimentation rates. The
ratios consistent with the observed fold widths are 5.0 for Yakeng, and 4.15
for Anjihai. Combining the predicted ratios with relevant magnetostratigraphic
sedimentation rates yields first-order estimates of the mean shortening rates
since relief emergence, 2.15 mm/yr at Yakeng and 1.12 mm/yr at Anjihai, both
much faster than the long-term averages. While the precision and reliability of
this fold-width method will depend on our ability to understand the ' ;
complexities of the post-emergence sedimentation regime, surface fold width §Y B B 4 E & 7 B
stands out as a remarkably sensitive measurement, governed as it is by (shortening rate) / (sedim. rate)
competition between two important geomorphic processes.
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